Keywords
UIST2.0 Archive - 20 years of UIST
Back
Back to keywords index

surface

direct-touch surface

In Proceedings of UIST 2009
Article Picture

Detecting and leveraging finger orientation for interaction with direct-touch surfaces (p. 23-32)

Abstract plus

Current interactions on direct-touch interactive surfaces are often modeled based on properties of the input channel that are common in traditional graphical user interfaces (GUI) such as x-y coordinate information. Leveraging additional information available on the surfaces could potentially result in richer and novel interactions. In this paper we specifically explore the role of finger orientation. This property is typically ignored in touch-based interactions partly because of the ambiguity in determining it solely from the contact shape. We present a simple algorithm that unambiguously detects the directed finger orientation vector in real-time from contact information only, by considering the dynamics of the finger landing process. Results of an experimental evaluation show that our algorithm is stable and accurate. We then demonstrate how finger orientation can be leveraged to enable novel interactions and to infer higher-level information such as hand occlusion or user position. We present a set of orientation-aware interaction techniques and widgets for direct-touch surfaces.

free-form surface

interactive surface

In Proceedings of UIST 2000
Article Picture

FlowMenu: combining command, text, and data entry (p. 213-216)

In Proceedings of UIST 2002
Article Picture

The actuated workbench: computer-controlled actuation in tabletop tangible interfaces (p. 181-190)

In Proceedings of UIST 2008
Article Picture

Bringing physics to the surface (p. 67-76)

Abstract plus

This paper explores the intersection of emerging surface technologies, capable of sensing multiple contacts and of-ten shape information, and advanced games physics engines. We define a technique for modeling the data sensed from such surfaces as input within a physics simulation. This affords the user the ability to interact with digital objects in ways analogous to manipulation of real objects. Our technique is capable of modeling both multiple contact points and more sophisticated shape information, such as the entire hand or other physical objects, and of mapping this user input to contact forces due to friction and collisions within the physics simulation. This enables a variety of fine-grained and casual interactions, supporting finger-based, whole-hand, and tangible input. We demonstrate how our technique can be used to add real-world dynamics to interactive surfaces such as a vision-based tabletop, creating a fluid and natural experience. Our approach hides from application developers many of the complexities inherent in using physics engines, allowing the creation of applications without preprogrammed interaction behavior or gesture recognition.

In Proceedings of UIST 2009
Article Picture

Contact area interaction with sliding widgets (p. 13-22)

Abstract plus

We show how to design touchscreen widgets that respond to a finger's contact area. In standard touchscreen systems a finger often appears to touch several screen objects, but the system responds as though only a single pixel is touched. In contact area interaction all objects under the finger respond to the touch. Users activate control widgets by sliding a movable element, as though flipping a switch. These Sliding Widgets resolve selection ambiguity and provide designers with a rich vocabulary of self-disclosing interaction mechanism. We showcase the design of several types of Sliding Widgets, and report study results showing that the simplest of these widgets, the Sliding Button, performs on-par with medium-sized pushbuttons and offers greater accuracy for small-sized buttons.

In Proceedings of UIST 2009
Article Picture

PhotoelasticTouch: transparent rubbery tangible interface using an LCD and photoelasticity (p. 43-50)

Abstract plus

PhotoelasticTouch is a novel tabletop system designed to intuitively facilitate touch-based interaction via real objects made from transparent elastic material. The system utilizes vision-based recognition techniques and the photoelastic properties of the transparent rubber to recognize deformed regions of the elastic material. Our system works with elastic materials over a wide variety of shapes and does not require any explicit visual markers. Compared to traditional interactive surfaces, our 2.5 dimensional interface system enables direct touch interaction and soft tactile feedback. In this paper we present our force sensing technique using photoelasticity and describe the implementation of our prototype system. We also present three practical applications of PhotoelasticTouch, a force-sensitive touch panel, a tangible face application, and a paint application.

In Proceedings of UIST 2009
Article Picture

Interactions in the air: adding further depth to interactive tabletops (p. 139-148)

Abstract plus

Although interactive surfaces have many unique and compelling qualities, the interactions they support are by their very nature bound to the display surface. In this paper we present a technique for users to seamlessly switch between interacting on the tabletop surface to above it. Our aim is to leverage the space above the surface in combination with the regular tabletop display to allow more intuitive manipulation of digital content in three-dimensions. Our goal is to design a technique that closely resembles the ways we manipulate physical objects in the real-world; conceptually, allowing virtual objects to be 'picked up' off the tabletop surface in order to manipulate their three dimensional position or orientation. We chart the evolution of this technique, implemented on two rear projection-vision tabletops. Both use special projection screen materials to allow sensing at significant depths beyond the display. Existing and new computer vision techniques are used to sense hand gestures and postures above the tabletop, which can be used alongside more familiar multi-touch interactions. Interacting above the surface in this way opens up many interesting challenges. In particular it breaks the direct interaction metaphor that most tabletops afford. We present a novel shadow-based technique to help alleviate this issue. We discuss the strengths and limitations of our technique based on our own observations and initial user feedback, and provide various insights from comparing, and contrasting, our tabletop implementations

large interactive surface

In Proceedings of UIST 2003
Article Picture

Dynamo: a public interactive surface supporting the cooperative sharing and exchange of media (p. 159-168)

In Proceedings of UIST 2004
Article Picture

Visual tracking of bare fingers for interactive surfaces (p. 119-122)

malleable surface

In Proceedings of UIST 2009
Article Picture

A reconfigurable ferromagnetic input device (p. 51-54)

Abstract plus

We present a novel hardware device based on ferromagnetic sensing, capable of detecting the presence, position and deformation of any ferrous object placed on or near its surface. These objects can include ball bearings, magnets, iron filings, and soft malleable bladders filled with ferrofluid. Our technology can be used to build reconfigurable input devices -- where the physical form of the input device can be assembled using combinations of such ferrous objects. This allows users to rapidly construct new forms of input device, such as a trackball-style device based on a single large ball bearing, tangible mixers based on a collection of sliders and buttons with ferrous components, and multi-touch malleable surfaces using a ferrofluid bladder. We discuss the implementation of our technology, its strengths and limitations, and potential application scenarios.

sketch surface

In Proceedings of UIST 2009
Article Picture

EverybodyLovesSketch: 3D sketching for a broader audience (p. 59-68)

Abstract plus

We present EverybodyLovesSketch, a gesture-based 3D curve sketching system for rapid ideation and visualization of 3D forms, aimed at a broad audience. We first analyze traditional perspective drawing in professional practice. We then design a system built upon the paradigm of ILoveSketch, a 3D curve drawing system for design professionals. The new system incorporates many interaction aspects of perspective drawing with judicious automation to enable novices with no perspective training to proficiently create 3D curve sketches. EverybodyLovesSketch supports a number of novel interactions: tick-based sketch plane selection, single view definition of arbitrary extrusion vectors, multiple extruded surface sketching, copy-and-project of 3D curves, freeform surface sketching, and an interactive perspective grid. Finally, we present a study involving 49 high school students (with no formal artistic training) who each learned and used the system over 11 days, which provides detailed insights into the popularity, power and usability of the various techniques, and shows our system to be easily learnt and effectively used, with broad appeal.

surface

In Proceedings of UIST 2008
Article Picture

Scratch input: creating large, inexpensive, unpowered and mobile finger input surfaces (p. 205-208)

Abstract plus

We present Scratch Input, an acoustic-based input technique that relies on the unique sound produced when a fingernail is dragged over the surface of a textured material, such as wood, fabric, or wall paint. We employ a simple sensor that can be easily coupled with existing surfaces, such as walls and tables, turning them into large, unpowered and ad hoc finger input surfaces. Our sensor is sufficiently small that it could be incorporated into a mobile device, allowing any suitable surface on which it rests to be appropriated as a gestural input surface. Several example applications were developed to demonstrate possible interactions. We conclude with a study that shows users can perform six Scratch Input gestures at about 90% accuracy with less than five minutes of training and on wide variety of surfaces.

In Proceedings of UIST 2009
Article Picture

Bonfire: a nomadic system for hybrid laptop-tabletop interaction (p. 129-138)

Abstract plus

We present Bonfire, a self-contained mobile computing system that uses two laptop-mounted laser micro-projectors to project an interactive display space to either side of a laptop keyboard. Coupled with each micro-projector is a camera to enable hand gesture tracking, object recognition, and information transfer within the projected space. Thus, Bonfire is neither a pure laptop system nor a pure tabletop system, but an integration of the two into one new nomadic computing platform. This integration (1) enables observing the periphery and responding appropriately, e.g., to the casual placement of objects within its field of view, (2) enables integration between physical and digital objects via computer vision, (3) provides a horizontal surface in tandem with the usual vertical laptop display, allowing direct pointing and gestures, and (4) enlarges the input/output space to enrich existing applications. We describe Bonfire's architecture, and offer scenarios that highlight Bonfire's advantages. We also include lessons learned and insights for further development and use.

In Proceedings of UIST 2009
Article Picture

Interactions in the air: adding further depth to interactive tabletops (p. 139-148)

Abstract plus

Although interactive surfaces have many unique and compelling qualities, the interactions they support are by their very nature bound to the display surface. In this paper we present a technique for users to seamlessly switch between interacting on the tabletop surface to above it. Our aim is to leverage the space above the surface in combination with the regular tabletop display to allow more intuitive manipulation of digital content in three-dimensions. Our goal is to design a technique that closely resembles the ways we manipulate physical objects in the real-world; conceptually, allowing virtual objects to be 'picked up' off the tabletop surface in order to manipulate their three dimensional position or orientation. We chart the evolution of this technique, implemented on two rear projection-vision tabletops. Both use special projection screen materials to allow sensing at significant depths beyond the display. Existing and new computer vision techniques are used to sense hand gestures and postures above the tabletop, which can be used alongside more familiar multi-touch interactions. Interacting above the surface in this way opens up many interesting challenges. In particular it breaks the direct interaction metaphor that most tabletops afford. We present a novel shadow-based technique to help alleviate this issue. We discuss the strengths and limitations of our technique based on our own observations and initial user feedback, and provide various insights from comparing, and contrasting, our tabletop implementations

surface computing

In Proceedings of UIST 2008
Article Picture

Sphere: multi-touch interactions on a spherical display (p. 77-86)

Abstract plus

Sphere is a multi-user, multi-touch-sensitive spherical display in which an infrared camera used for touch sensing shares the same optical path with the projector used for the display. This novel configuration permits: (1) the enclosure of both the projection and the sensing mechanism in the base of the device, and (2) easy 360-degree access for multiple users, with a high degree of interactivity without shadowing or occlusion. In addition to the hardware and software solution, we present a set of multi-touch interaction techniques and interface concepts that facilitate collaborative interactions around Sphere. We designed four spherical application concepts and report on several important observations of collaborative activity from our initial Sphere installation in three high-traffic locations.

In Proceedings of UIST 2009
Article Picture

Mouse 2.0: multi-touch meets the mouse (p. 33-42)

Abstract plus

In this paper we present novel input devices that combine the standard capabilities of a computer mouse with multi-touch sensing. Our goal is to enrich traditional pointer-based desktop interactions with touch and gestures. To chart the design space, we present five different multi-touch mouse implementations. Each explores a different touch sensing strategy, which leads to differing form-factors and hence interactive possibilities. In addition to the detailed description of hardware and software implementations of our prototypes, we discuss the relative strengths, limitations and affordances of these novel input devices as informed by the results of a preliminary user study.

In Proceedings of UIST 2009
Article Picture

Augmenting interactive tables with mice & keyboards (p. 149-152)

Abstract plus

This note examines the role traditional input devices can play in surface computing. Mice and keyboards can enhance tabletop technologies since they support high fidelity input, facilitate interaction with distant objects, and serve as a proxy for user identity and position. Interactive tabletops, in turn, can enhance the functionality of traditional input devices: they provide spatial sensing, augment devices with co-located visual content, and support connections among a plurality of devices. We introduce eight interaction techniques for a table with mice and keyboards, and we discuss the design space of such interactions.

In Proceedings of UIST 2010
Article Picture

PhoneTouch: a technique for direct phone interaction on surfaces (p. 13-16)

Abstract plus

PhoneTouch is a novel technique for integration of mobile phones and interactive surfaces. The technique enables use of phones to select targets on the surface by direct touch, facilitating for instance pick&drop-style transfer of objects between phone and surface. The technique is based on separate detection of phone touch events by the surface, which determines location of the touch, and by the phone, which contributes device identity. The device-level observations are merged based on correlation in time. We describe a proof-of-concept implementation of the technique, using vision for touch detection on the surface (including discrimination of finger versus phone touch) and acceleration features for detection by the phone.

In Proceedings of UIST 2010
Article Picture

Combining multiple depth cameras and projectors for interactions on, above and between surfaces (p. 273-282)

Abstract plus

Instrumented with multiple depth cameras and projectors, LightSpace is a small room installation designed to explore a variety of interactions and computational strategies related to interactive displays and the space that they inhabit. LightSpace cameras and projectors are calibrated to 3D real world coordinates, allowing for projection of graphics correctly onto any surface visible by both camera and projector. Selective projection of the depth camera data enables emulation of interactive displays on un-instrumented surfaces (such as a standard table or office desk), as well as facilitates mid-air interactions between and around these displays. For example, after performing multi-touch interactions on a virtual object on the tabletop, the user may transfer the object to another display by simultaneously touching the object and the destination display. Or the user may "pick up" the object by sweeping it into their hand, see it sitting in their hand as they walk over to an interactive wall display, and "drop" the object onto the wall by touching it with their other hand. We detail the interactions and algorithms unique to LightSpace, discuss some initial observations of use and suggest future directions.

surface parameterization

In Proceedings of UIST 2006
Article Picture

A direct texture placement and editing interface (p. 23-32)

surface technology

In Proceedings of UIST 2008
Article Picture

Going beyond the display: a surface technology with an electronically switchable diffuser (p. 269-278)

Abstract plus

We introduce a new type of interactive surface technology based on a switchable projection screen which can be made diffuse or clear under electronic control. The screen can be continuously switched between these two states so quickly that the change is imperceptible to the human eye. It is then possible to rear-project what is perceived as a stable image onto the display surface, when the screen is in fact transparent for half the time. The clear periods may be used to project a second, different image through the display onto objects held above the surface. At the same time, a camera mounted behind the screen can see out into the environment. We explore some of the possibilities this type of screen technology affords, allowing surface computing interactions to extend 'beyond the display'. We present a single self-contained system that combines these off-screen interactions with more typical multi-touch and tangible surface interactions. We describe the technical challenges in realizing our system, with the aim of allowing others to experiment with these new forms of interactive surfaces.

touch surface

In Proceedings of UIST 2005
Article Picture

Interacting with large displays from a distance with vision-tracked multi-finger gestural input (p. 43-52)