Keywords
UIST2.0 Archive - 20 years of UIST
Back
Back to keywords index

motor

motor impairment

In Proceedings of UIST 2003
Article Picture

EdgeWrite: a stylus-based text entry method designed for high accuracy and stability of motion (p. 61-70)

In Proceedings of UIST 2007
Article Picture

Automatically generating user interfaces adapted to users' motor and vision capabilities (p. 231-240)

Abstract plus

Most of today's GUIs are designed for the typical, able-bodied user; atypical users are, for the most part, left to adapt as best they can, perhaps using specialized assistive technologies as an aid. In this paper, we present an alternative approach: SUPPLE++ automatically generates interfaces which are tailored to an individual's motor capabilities and can be easily adjusted to accommodate varying vision capabilities. SUPPLE++ models users. motor capabilities based on a onetime motor performance test and uses this model in an optimization process, generating a personalized interface. A preliminary study indicates that while there is still room for improvement, SUPPLE++ allowed one user to complete tasks that she could not perform using a standard interface, while for the remaining users it resulted in an average time savings of 20%, ranging from an slowdown of 3% to a speedup of 43%.

motor space

In Proceedings of UIST 2010
Article Picture

Enhanced area cursors: reducing fine pointing demands for people with motor impairments (p. 153-162)

Abstract plus

Computer users with motor impairments face major challenges with conventional mouse pointing. These challenges are mostly due to fine pointing corrections at the final stages of target acquisition. To reduce the need for correction-phase pointing and to lessen the effects of small target size on acquisition difficulty, we introduce four enhanced area cursors, two of which rely on magnification and two of which use goal crossing. In a study with motor-impaired and able-bodied users, we compared the new designs to the point and Bubble cursors, the latter of which had not been evaluated for users with motor impairments. Two enhanced area cursors, the Visual-Motor-Magnifier and Click-and-Cross, were the most successful new designs for users with motor impairments, reducing selection time for small targets by 19%, corrective submovements by 45%, and error rate by up to 82% compared to the point cursor. Although the Bubble cursor also improved performance, participants with motor impairments unanimously preferred the enhanced area cursors.

motor space manipulation

In Proceedings of UIST 2008
Article Picture

Kinematic templates: end-user tools for content-relative cursor manipulations (p. 47-56)

Abstract plus

This paper introduces kinematic templates, an end-user tool for defining content-specific motor space manipulations in the context of editing 2D visual compositions. As an example, a user can choose the "sandpaper" template to define areas within a drawing where cursor movement should slow down. Our current implementation provides templates that amplify or dampen the cursor's speed, attenuate jitter in a user's movement, guide movement along paths, and add forces to the cursor. Multiple kinematic templates can be defined within a document, with overlapping templates resulting in a form of function composition. A template's strength can also be varied, enabling one to improve one's strokes without losing the human element. Since kinematic templates guide movements, rather than strictly prescribe them, they constitute a visual composition aid that lies between unaided freehand drawing and rigid drawing aids such as snapping guides, masks, and perfect geometric primitives.

multiple vibration motor

In Proceedings of UIST 2009
Article Picture

SemFeel: a user interface with semantic tactile feedback for mobile touch-screen devices (p. 111-120)

Abstract plus

One of the challenges with using mobile touch-screen devices is that they do not provide tactile feedback to the user. Thus, the user is required to look at the screen to interact with these devices. In this paper, we present SemFeel, a tactile feedback system which informs the user about the presence of an object where she touches on the screen and can offer additional semantic information about that item. Through multiple vibration motors that we attached to the backside of a mobile touch-screen device, SemFeel can generate different patterns of vibration, such as ones that flow from right to left or from top to bottom, to help the user interact with a mobile device. Through two user studies, we show that users can distinguish ten different patterns, including linear patterns and a circular pattern, at approximately 90% accuracy, and that SemFeel supports accurate eyes-free interactions.

voice coil motor

In Proceedings of UIST 2008
Article Picture

Tapping and rubbing: exploring new dimensions of tactile feedback with voice coil motors (p. 181-190)

Abstract plus

Tactile feedback allows devices to communicate with users when visual and auditory feedback are inappropriate. Unfortunately, current vibrotactile feedback is abstract and not related to the content of the message. This often clash-es with the nature of the message, for example, when sending a comforting message.

We propose addressing this by extending the repertoire of haptic notifications. By moving an actuator perpendicular to the user's skin, our prototype device can tap the user. Moving the actuator parallel to the user's skin induces rub-bing. Unlike traditional vibrotactile feedback, tapping and rubbing convey a distinct emotional message, similar to those induced by human-human touch.

To enable these techniques we built a device we call soundTouch. It translates audio wave files into lateral motion using a voice coil motor found in computer hard drives. SoundTouch can produce motion from below 1Hz to above 10kHz with high precision and fidelity.

We present the results of two exploratory studies. We found that participants were able to distinguish a range of taps and rubs. Our findings also indicate that tapping and rubbing are perceived as being similar to touch interactions exchanged by humans.