A proactive display is an application that selects content to display based on the set of users who have been detected nearby. For example, the Ticket2Talk [17] proactive display application presented content for users so that other people would know something about them.
It is our view that promising patterns for proactive display applications have been discovered, and now we face the need for frameworks to support the range of applications that are possible in this design space.
In this paper, we present the Proactive Display (ProD) Framework, which allows for the easy construction of proactive display applications. It allows a range of proactive display applications, including ones already in the literature. ProD also enlarges the design space of proactive display systems by allowing a variety of new applications that incorporate different views of social life and community.
Many digital painting systems have been proposed and their quality is improving. In these systems, graphics tablets are widely used as input devices. However, because of its rigid nib and indirect manipulation, the operational feeling of a graphics tablet is different from that of real paint brush. We solved this problem by developing the MR-based Artistic Interactive (MAI) Painting Brush, which imitates a real paint brush, and constructed a mixed reality (MR) painting system that enables direct painting on physical objects in the real world.
We describe techniques for direct pen+touch input. We observe people's manual behaviors with physical paper and notebooks. These serve as the foundation for a prototype Microsoft Surface application, centered on note-taking and scrapbooking of materials. Based on our explorations we advocate a division of labor between pen and touch: the pen writes, touch manipulates, and the combination of pen + touch yields new tools. This articulates how our system interprets unimodal pen, unimodal touch, and multimodal pen+touch inputs, respectively. For example, the user can hold a photo and drag off with the pen to create and place a copy; hold a photo and cross it in a freeform path with the pen to slice it in two; or hold selected photos and tap one with the pen to staple them all together. Touch thus unifies object selection with mode switching of the pen, while the muscular tension of holding touch serves as the "glue" that phrases together all the inputs into a unitary multimodal gesture. This helps the UI designer to avoid encumbrances such as physical buttons, persistent modes, or widgets that detract from the user's focus on the workspace.
Webmail clients provide millions of end users with convenient and ubiquitous access to electronic mail - the most successful collaboration tool ever. Web email clients are also the platform of choice for recent innovations on electronic mail and for integration of related information services into email. In the enterprise, however, webmail applications have been relegated to being a supplemental tool for mail access from home or while on the road. In this paper, we draw on recent research in the area of electronic mail to understand usage models and performance requirements for enterprise email applications. We then present an innovative architecture for a webmail client. By leveraging recent advances in web browser technology, we show that webmail clients can offer performance and responsiveness that rivals a desktop application while still retaining all the advantages of a browser based client.
The development of user interface systems has languished with the stability of desktop computing. Future systems, however, that are off-the-desktop, nomadic or physical in nature will involve new devices and new software systems for creating interactive applications. Simple usability testing is not adequate for evaluating complex systems. The problems with evaluating systems work are explored and a set of criteria for evaluating new UI systems work is presented.