

Mash-ups Considered Harmful!
Composition and Choreography of Web Components

Charlie Wiecha, Rahul Akolkar, Rafah Hosn, Thomas Ling
IBM T.J. Watson Research Center

P.O. Box 704, Yorktown Heights, NY 10598,USA
{wiecha, rhosn, akolkar, ling}@us.ibm.com

ABSTRACT
We review several compositional-approaches to web appli-
cation design – including multimodal programming models
such as XHTML+Voice and common AJAX design pat-
terns used in Mash-ups today. We propose a factoring of
Mash-ups in order to support a looser coupling between
independently-authored components along with a new
XML-based controller language under design in the W3C
based on State Charts from UML 2.0. Finally, we propose a
formalization of web components, leveraging XForms,
allowing the packaging of mash-ups into reusable web ap-
plication components.

INTRODUCTION
The Web originated as a means for publishing hypertext
documents; using HTTP and HTML, it created a universal
platform for deploying user interaction. As the Web moves
out of our desktops and into our pockets, we have seen
increased fragmentation; today, Web authors are forced to
choose among client-side technologies such as Flash or
complex scripting when deploying to rich clients and cus-
tomized applications optimized for a particular mobile de-
vice.
The primary motivation behind our work is to regain some
of the lost ground with respect to deploying universally
accessible Web content, where universal access includes
all of the Web's original advantages: accessible to markup
authors, accessible from a variety of end-user devices, and
accessible to users with ever-changing needs and
abilities.
Thus, we aim to enable Web applications that are easy to
author and deploy, and create rich end-user interaction
that degrades gracefully. Toward this end, we propose an
extension of XForms, called XML Application Compo-
nents (XACs), that collects the concepts of composition,
integration, and late binding into a concrete proposal for a
simplified and more functional web-based programming
model. Along the way, we bring back some of the Web's
core principles such as easy to author markup that is uni-
versally accessible creates the show-source network effect.

CURRENT WEB COMPOSITIONAL MODELS
Building web applications by composition has a long his-
tory, of course, including multimodal interaction. Figure 1

shows the XHTML+Voice programming model which
composes GUI and Voice widgets using XML Events to
synchronize state and focus changes between the two com-
ponents. Targeting current XHTML markup, and hence
lacking a shared data model, X+V applications will suffer
the O(n2) complexity of direct widget to widget wirings.

Figure 1: Multimodal widget to widget wiring

Mash-ups, such as the Google maps overlay with Dublin
real-time commuter train data shown in Figure 2, below,
have gained significant attention recently as illustrating the
potential for highly interactive UIs on conventional web
platforms. Notice, however, that train data is still passed to
the map component by direct widget to widget wiring –
hence suffering the same O(n2) blowup as in the X+V ex-
ample above. Further, the mash-up component is tightly
coupled to the map component – with its own interaction
logic intermixed with the train to map wiring logic. We
seek a looser coupling programming model in which each
component can be separately authored and then brought
together and coordinated independently.

Figure 2: AJAX widget to widget wiring

X+V <Sync>

elements

XHTML

GUI

VoiceXML

Train

JS HTML+

Google

HTML

Train

Google

Copyright is held by the author/owner.
UIST’06, October 15–18, 2006, Montreux, Switzerland.

UIST 2006 Adjunct Proceedings: Posters 103

TOWARD A NEW WEB COMPONENT MODEL
XML Application Components (XAC’s) is a framework for
authoring, composing and deploying XML Web applica-
tions. It builds on existing Web infrastructure including
XForms, XHTML and XML Web services to enable com-
ponent based Web applications. XML Application Com-
ponents (XACs) encapsulate fragments of XHTML and
XForms markup that create and bind a custom user inter-
face to an XML data instance. XACs can be instantiated
and configured to author higher-level applications rapidly.
XACs can be composed to create larger applications.
XACs publish an XML structure to their caller, and the
type (i.e., the shape of the XML structure returned by that
component) is exposed via the component's public data
models. Public data models are designed to be both ma-
chine and human consumable and serve as the primary
component API.

Figure 3: Widget to model binding with SCXML
Controller

 In the figure above, all UI components – whether built-in
atomic XForms widgets or composite XACs, are wired to
corresponding data model elements rather than cross-wired
to each other. Immediately, this reduces the complexity of
UI wiring to be linear in the number of widgets rather than
quadratic. Further, each UI component is independently
authored and assembled as a data model listener -- perhaps
with additional XML event-based choreography as de-
scribed in the next section.
We explore multiple languages for cross-component cho-
reography, including the State Chart XML language
emerging from the W3C and co-edited by one of us [1, 2].
A visual editor for SCXML building from IBM’s Rational
Software Architect tools platform, is shown in Figure 4,
below.
Leverage Legacy: XACs can leverage existing Web appli-
cations such as Yahoo Maps or GMail without regard to
their underlying implementation technique; existing Web

applications can be adapted by defining a light-weight
XAC adapter that publishes an appropriate data model for
the underlying application and implements the XAC con-
tract. The Yahoo map component in Figure 3 is one such
“legacy” web component – and functions in our environ-
ment by means of an XBL wrapper assuring it responds to
and raises appropriate XForms events to function as an
XAC component.

Figure 4: State chart XML (SCXML) controller

Enable Late Binding: XACs encourage late-binding; final
presentation (including visual or auditory styling), as well
as interaction behavior (i.e., the event handlers that are
active in a given interaction environment) may be aug-
mented and configured on the end-user device. Interpret-
ing high-level, intent-based XML markup at the final step
enables dynamic behaviors not normally possible in ap-
proaches that rely on server-side render kits for device ad-
aptation.
Componentizable: XACs are themselves componentiz-
able; i.e., once authored, an XAC application can itself be
re-used as a XAC component by exposing an appropriate
public data model. Thus, XACs close the loop between
Web Services and Web Applications; XACs once pub-
lished to the Web can be accessed as Web Services, and
available Web services can be exposed as XAC compo-
nents.

Figure 5: XAC republishes two views and public
model as new component

REFERENCES
1.State Chart XML (SCXML): State Machine Notation for

Control Abstraction, W3C Working Draft 24 January
2006: http://www.w3.org/TR/scxml/

2.Apache Jakarta Commons SCXML:
http://jakarta.apache.org/commons/scxml

XForms Data Model

XHTML+

XForms

SCXML

Yahoo

Map

XML

Model

Views

104 UIST 2006 Adjunct Proceedings: Posters

