

Pattern Matching on Stylus Keyboards: A Powerful
Approach to Faster and Easier Pen-based Text Entry

Per-Ola Kristensson

Department of Computer and Information Science
Linköpings universitet

581 83, Linköping, Sweden

ABSTRACT
Much work has been done in developing alternative
methods of writing for pen-based computers, including
handwriting recognition, optimization of keyboard layouts,
and specialized writing systems. Generally there is a trade-
off between writing speed and the effort required by the
user to write the text. My doctoral dissertation is about
developing text entry systems maximizing the writing
speed but minimizing users’ effort by taking advantage of
the redundancy of the human languages and viewing the
legitimate input strings in the language as patterns mapped
on a keyboard layout. I present my work on using pattern
matching algorithms to take advantage of these constraints
to develop a shorthand writing system combined with a
stylus keyboard, allowing fast text entry without the need to
learn any custom alphabet or a specialized writing system. I
also present some of the feedback and output interfaces I
believe can greatly enhance the user experience when using
pattern matching text entry systems. I conclude by
discussing performance evaluation and planned future
work.

Categories and Subject Descriptors: H.5.2 [User
Interfaces]: Input Devices and Strategies, Interaction
Styles

Additional Keywords and Phrases: Shorthand, stylus
keyboard, virtual keyboard, gesture-based interfaces

INTRODUCTION
Text entry including writing emails, research papers,
patents and program code, constitute one of the most
frequent tasks performed on a computer. Pen computers
such as PDAs and Tablet PCs need a fast text entry method.
Unfortunately both handwriting and speech recognition are
limited by low speed and recognition problems [2, 5]. As a
result the HCI community has researched alternative
methods of efficient text entry. These can roughly be
divided into three broad categories: the stylus keyboard,
gesture-based text entry, and intelligent text entry systems.

The Stylus Keyboard
One approach is the stylus keyboard, also known as on-
screen, graphical, virtual or soft keyboard. The obvious
need is to miniaturize the QWERTY desktop keyboard.
QWERTY was designed to prevent mechanical jamming in
typewriters. As a result, the inventor C. L. Sholes
deliberately distributed the frequent letter key combinations
as far apart as possible on the left and right sides of the
keyboard. When using a single point input device, such as a
stylus, this results in frequent zigzag movements from the
left to the right—clearly a suboptimal solution for pen
entry. As a result, much effort has been invested in
optimizing the stylus keyboard for stylus tapping.
Getschow et al. [3] pioneered the approach of minimizing
the statistical movement distance between the keys based
on digraph frequencies. MacKenzie and Zhang [8] used
such a model to heuristically derive a better stylus
keyboard. Zhai et al. [12] introduced algorithmic methods
of finding near optimal stylus keyboards, also incorporating
other desirable properties such as maintaining a semi-
alphabetic ordering among the keys and connecting
frequently used words. Such a keyboard was dubbed
ATOMIK (see Figure 2) and has a theoretically estimated
text entry peak rate of 45 wpm.

Gesturing Text
A fundamentally different approach to computer text input
is to let users write or gesture the text using the pen. Such
an approach may be more natural to users since it utilizes
the affordances of the pen better. The straight-forward
approach is to let the users handwrite each individual letter,
as in for example Jot, the single letter text entry method on
Microsoft Pocket PC. However, the individual letters in
natural alphabets, such as the Roman alphabet, are
unnecessarily complex, and the slow text entry speed can
be improved by simplifying the letters. For pen-computing
an early approach is the well-known Unistrokes alphabet
[4] that defines simplified gestures for the letters, giving the
most frequent letters the simplest gestures. Another
important design consideration in Unistrokes is the explicit
delimitation of characters by designing every gesture to be
entered as a single stroke, thereby avoiding the difficult
segmentation problem in handwriting altogether. Since
Goldberg and Richardson presented Unistrokes many

Copyright is held by the author/owner.
UIST ’04, October 24–27, 2004, Santa Fe, New Mexico, USA
ACM 1-58113-962-4/04/0010

alternative gesture based methods have been proposed. See
[14] for a recent overview.

Intelligent Text Entry Systems
The previously described approaches all let the user input
each character verbatim. However, character frequencies
are not uniformly distributed, a fact Shannon used in
demonstrating his seminal work on information theory [9].
Means of interactively exploiting language regularities in
pen-based text entry have also been explored in the HCI
community, both in gesturing and stylus keyboarding. A
particularly intriguing example is Dasher [10], where the
user slides a stylus (or other pointing device, such as an
eye-tracker) towards different dynamic areas representing
characters to be inputted, whose size dynamically changes
depending on the probability of the character represented
by the area appearing after the system’s previous output.
However Dasher demands constant visual attention from
the user since the user has to visually scan a dynamically
changing graphical scene.

SHORTHAND WRITING ON A STYLUS KEYBOARD
In an attempt to make exploitation of language regularities
a natural component of text entry, Zhai and Kristensson
[13] present a text entry technique that combines gesturing
and stylus keyboarding, dubbed SHARK (Shorthand Aided
Rapid Keyboarding). It is based on an observation in stylus
keyboard research that for the most common words, users
tend to remember the pattern of the word [11]. For the most
frequent words (200100 −≈ words) SHARK defines
shorthand gestures, called sokgraphs [14] that are single
stroke gestures traced by the letter keys comprising a word.
Figure 1 shows the word the as a sokgraph (note that
sokgraphs are recognized independent of scale and
translation in SHARK). The rest of the vocabulary is typed
using a stylus keyboard. According to the well known
Zipf’s law, about 50% of the word occurrences in English
are composed of the 100 most frequent words, hence
SHARK offers a potential speed-boost compared to ordinary
stylus keyboards for about half of the text mass.

Figure 1: The word “the” as a sokgraph on the
ATOMIK layout (shown in Figure 2). The circle
indicates the start position.

Motivating Principles
Zhai and Kristensson [13] present five motivating
principles for SHARK:

• Scale and location independency: SHARK recognizes
sokgraphs independent of scale and translation, hence the
writing need not be visually guided.

• Efficiency: SHARK is efficient compared to handwriting
or specialized alphabets. In SHARK a single stroke

denotes an entire word, compared to for example the
Unistrokes alphabet, where one stroke equals one
character. Also, SHARK is preferably defined on an
optimized stylus keyboard such as ATOMIK [14], thus
making SHARK movement efficient.

• Duality: SHARK uses dual methods of input, both
optimized stylus keyboarding which can be used to enter
any word, and sokgraphs for the most frequently used
words in the language.

• Zipf’s law effect: Zipf’s law tells us that defining
sokgraphs for only the most frequently used words would
still yield a significant speed increase in about 50% of the
writing.

• Transition from tapping to gesturing: The mapping
between a sokgraph and its tapping pattern (serially
tapping the letter keys of the word) is similar. Hence a
user may decide to start writing the sokgraph instead of
tapping the word, once the user has learned the pattern of
the word.

Feasibility of the SHARK paradigm
Zhai and Kristensson [13] also conducted a feasibility study
showing that users could learn about 15 sokgraphs per 45
minute training session. Hence, although artificial, SHARK
seems to be easy to learn for users never exposed to the
system before.

SHARK2
Paradigm Shift
While we believe SHARK to be a system demonstrating
great potential in pen-based text writing, we later realized
that much improvement could be made in the paradigm. A
critical weakness in SHARK is the alternation of tapping
and gesturing, which not only complicates the text entry
process, but also is an obstacle towards a gradual and
smooth transition from novice to expert performance in
going from serially tapping the letter keys, to gesturing the
sokgraph. Both visually and kinematically, tapping and
gesturing are distinctively different actions. Hence, the
duality principle mentioned earlier, might not be as
advantageous in practice as initially believed [13]. For this
reason Kristensson and Zhai [6] revised the SHARK
paradigm to allow all words in a large vocabulary
(000,20000,10 −≈ words) to be gestured directly.

Figure 2: The user is writing “using” on the ATOMIK
layout using the SHARK2 system.

Multi-channel Recognition Architecture
To develop a system capable of efficiently searching among

E

T H

thousands of sokgraphs is a serious challenge for primarily
three reasons. The first reason is that there is no natural
source of sokgraphs to collect, thus we cannot use
traditional well-understood data-driven methods to devise
our classifier (see [1] for a recent review of such methods).
The second reason is that we do not know which of the
many features of the SHARK system (shape of the
sokgraphs, the absolute location, number of corners, etc.)
that are actually both efficient in separating sokgraphs from
a computational stand-point, and are intuitive to the user.
The third reason is that even if suppose we do know the
most efficient features of the sokgraphs and have developed
classifiers to recognize them, there is as of today no method
of integrating multiple-classifier scores in a sound
mathematical way that does not require training data. In
essence we have a bootstrap problem: we need data to use
the well-understood methods of pattern classification, but
since our input system is novel, no such data exists, and
cannot exist if we never build a working system in the first
place.

To handle this challenge Kristensson and Zhai [6]
developed a multi-channel recognition architecture where
each channel does not necessarily have enough
discriminative power on its own, but the combination (or
integration) of the channels results in high-accuracy
matches. The primary recognition channels are shape and
location, where the shape channel examines the overall
normalized shape similarity and calculates a score (due to
space concerns we refer the reader to [6] for the details),
and the location channel measures the absolute position of
the user’s pen trace on the stylus keyboard. In essence,
preference is given to sokgraphs that are positioned closer
to the user’s pen trace (see [6] for the details). This can be
viewed as a relaxation of the Scale and location
independence principle in the original SHARK system, and
was necessary to separate the large amount of possible
sokgraphs now available.

Dynamic Channel Weighting. A “tweak” in the channel
architecture is that the weighting of the location channel
depends on the user’s writing speed. For each word we
calculate a Fitts’ law estimation of the normative writing
time. If the user is slower than this amount, we assume the
user used visual attention when writing the word and hence
we increase the weight of the location channel. Great care
must be used when doing this kind of dynamic weighting
because we do not want rare words (but which happens to
be slightly more similar in shape to the input trace) to be
given preference for a much more common (and thus more
likely) word that is closer in location, just because the user
produced a fast sokgraph. This is particularly true for a very
short word, such as “as”, that has many close neighbors on
the ATOMIK layout, for example “cop”, “coop” and “co”.

Channel Integration
As previously stated there is no known mathematically
sound method of integrating channel scores. However, a

reasonable assumption is that the distance from the user’s
input to a template gesture follows a Gaussian distribution.
Under this assumption we can integrate the channels using
the Gaussian probability density function, where the mean
is zero, and the standard deviation can be seen as a
parameter weighting the contribution of the channel (see [6]
for more details).

Language Models
Although we are satisfied with the performance of the
SHARK2 system some confusions and recognition mistakes
cannot be avoided. Also, the user may write a sokgraph too
“sloppy”, making a “correct” classification difficult. Some
degree of confusion also stems from the fact that short
sokgraphs (two or three letters) can be partly or completely
ambiguous when the lexicon is large enough. An example
is the word “the” that has some nearest neighbors that are
close in both shape and location such as “whig”, “old” and
“thee” on the ATOMIK layout. “thee” is in fact completely
ambiguous to “the”. To resolve such issues the current
SHARK2 system uses a language model that computes the
bigram probabilities of the words in the N-best list given
the previous word outputted from the system. The highest
ranked word is then returned to the user.

FEEDBACK AND OUTPUT INTERFACES
All recognition based systems can occasionally make errors
and SHARK2 is not an exception in that regard. Some errors
can be automatically corrected by a higher-order language
model as discussed above. Other errors are more difficult to
correct and require user intervention. Errors can be
attributed to either the user or the recognizer, or both. The
user can make an error by for example misspelling the word
(tracing incorrect letter keys) or simply writing the
sokgraph too imprecise, making accurate recognition
impossible. The recognizer can make an error by having a
too imprecise input in a too crowded classification space.

Morphing
To partly prevent the user errors we morph the user’s pen
trace towards the sokgraph that was recognized by the
system. Since the key components of the system are based
on the geometrical shape and location proximity, by
looking at the animation the user gets a partial
understanding of why the input trace was classified as that
particular sokgraph.

N-best List Selection
To handle recognition errors, we mark all words outputted
by the system that have other highly probable candidates
with a distinct background color. When the user presses the
stylus on such a word a linear N-best list pops up. The user
can now drag the stylus toward any desired candidate in the
list. The selection is finalized by lifting the stylus. We
chose to use a linear list rather than a pie menu because it
was found in an early feasibility study that pie menus suffer
from the user’s hand obscuring half the pie. A linear menu
can pop up to the left or the right of the invocation point

depending on whether the user is left or right handed.

EVALUATION
Extensive evaluation of a text entry system such as SHARK2
is complex for many reasons (see [14] for an in-depth
discussion on the matter). First, a task that is sufficiently
natural but highly measurable has to be selected. Second,
the issue of whether to allow users to correct their input or
not is difficult: should we allow or force the users to correct
their input and in that case how do we take these
corrections into account when calculating the final
performance scores? Third, the amount of training time
taken by the users obviously affects the user’s performance.
We cannot know where a user’s performance levels off
until we actually reach that training point. Hence a time-
consuming longitudinal study is needed to thoroughly
evaluate the system. Although I do plan to conduct such a
study, currently we only have expert estimates gathered
from letting two users repeatedly write a particular set of
words as fast as they can. These “expert speed” estimates
ranges from 44-110 wpm for different sentences. The
lowest score of 44 wpm was obtained by letting a user
repeatedly (and completely correctly) write the sentence
“The quick brown fox jumps over the lazy dog” using a
20,000 words large lexicon. It is worth mentioning in this
context that the theoretical maximum speed obtainable by
the optimized stylus keyboard ATOMIK is estimated to
about 45 wpm. Hence, the system shows great potential as a
faster alternative for text entry on pen-based computers.

CONCLUSIONS AND FUTURE WORK
We have shown that pattern matching on stylus keyboards
is a powerful concept that can be used to devise efficient
and easier to learn shorthand writing systems. In addition
we have shown how to engineer such a system for a large
vocabulary. We have also presented interaction and
visualization techniques to ease the user experience of
pattern matching text entry systems such as SHARK or
SHARK2. Finally we have presented results from user
evaluations indicating that users can learn sokgraphs in
reasonable time, and that the potential expert speed
performance exceeds the one theoretically estimated for
optimized stylus keyboards. Currently I am working on
minimizing the memory and CPU usage of the system, to
make it possible to run the system with a very large
vocabulary (about 57,000 words) and limited computing
power. I plan to release a full version of SHARK2 to the
public and collect some real usage data by letting users
voluntary allow the software to report their average speed
and mean number of corrections. Future work will be
concentrated on doing extensive user evaluation of initial
learning time, user acceptance and generally the practical
performance obtained by users using the SHARK2 system in
their natural environment. Experiences from these
evaluations will guide future development and refinements
of the system.

ACKNOWLEDGMENTS
SHARK and SHARK2 were co-invented with my Ph. D.
advisor Shumin Zhai. Parts of the work mentioned in this
paper were done when the author was a graduate intern at
the IBM Almaden Research Center in 2003 and 2004.

REFERENCES
1. Duda, R. O., Hart, P. E. and Stork, D. G. Pattern

Classification, 2nd ed., Wiley Interscience, 2000.
2. Frankish, C., Hull, R. and Morgan, P. Recognition

accuracy and user acceptance of pen interfaces, Proc.
CHI 1995, pp. 503-510.

3. Getschow, C. O., Rosen, M. J. and Goodenough-
Trepagnier, C. A systematic approach to design a
minimum distance alphabetical keyboard. Proc.
RESNA (Rehabilitation Engineering Society of North
America) 9th Annual Conference, 1986, pp. 396-398.

4. Goldberg, D. and Richardson, C. Touch-typing with a
stylus, Proc. INTERCHI ’93, pp. 80-87.

5. Karat, C-M., Halverson, C., Horn, D. and Karat, J.
Patterns of Entry and Correction in Large Vocabulary
Continuous Speech Recognition Systems, Proc. CHI
1999, pp. 568-574.

6. Kristensson, P-O. and Zhai, S. SHARK2 – A Large
Vocabulary Shorthand Writing System for Pen-based
Computers, Proc. UIST 2004, CHI Letters, (6)2, (to
appear).

7. Kurtenbach, G., Sellen, A. and Buxton, W. An
empirical evaluation of some articulatory and cognitive
aspects of “marking menus”, Human Computer
Interaction, 1993, (8)1, pp. 1-23.

8. MacKenzie, I. S. and Zhang, S. X. The design and
evaluation of a high-performance soft keyboard, Proc.
CHI 1999, pp. 25-31.

9. Shannon, C. E. A mathematical theory of
communication, The Bell System Technical Journal,
1948, 27, pp. 379-343, 623-656.

10. Ward, D., Blackwell, A. and MacKay, D. Dasher - A
data entry interface using continuous gesture and
language models, Proc. UIST 2000, CHI Letters, 2(2),
pp. 129-136.

11. Zhai, S., Sue, A. and Accot, J. Movement Model, Hits
Distribution and Learning in Virtual Keyboarding,
Proc. CHI 2002, CHI Letters, (4)1, pp. 17-24.

12. Zhai, S., Smith, B. A. and Hunter, M. Human
Performance Optimization of Virtual Keyboards,
Human Computer Interaction, 2002, 17(2&3), pp. 229-
270.

13. Zhai, S. and Kristensson, P-O. Shorthand Writing on
Stylus Keyboard, Proc. CHI 2003, CHI Letters, (5)1,
pp. 97-104.

14. Zhai, S., Kristensson, P-O and Smith, B. In search of
effective text input interfaces for off the desktop
computing, Interacting with Computers, 2004, 16, (to
appear).

