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ABSTRACT 
Much work has been done in developing alternative 
methods of writing for pen-based computers, including 
handwriting recognition, optimization of keyboard layouts, 
and specialized writing systems. Generally there is a trade-
off between writing speed and the effort required by the 
user to write the text. My doctoral dissertation is about 
developing text entry systems maximizing the writing 
speed but minimizing users’ effort by taking advantage of 
the redundancy of the human languages and viewing the 
legitimate input strings in the language as patterns mapped 
on a keyboard layout. I present my work on using pattern 
matching algorithms to take advantage of these constraints 
to develop a shorthand writing system combined with a 
stylus keyboard, allowing fast text entry without the need to 
learn any custom alphabet or a specialized writing system. I 
also present some of the feedback and output interfaces I 
believe can greatly enhance the user experience when using 
pattern matching text entry systems. I conclude by 
discussing performance evaluation and planned future 
work. 

Categories and Subject Descriptors: H.5.2 [User 
Interfaces]: Input Devices and Strategies, Interaction 
Styles 

Additional Keywords and Phrases: Shorthand, stylus 
keyboard, virtual keyboard, gesture-based interfaces  

INTRODUCTION 
Text entry including writing emails, research papers, 
patents and program code, constitute one of the most 
frequent tasks performed on a computer. Pen computers 
such as PDAs and Tablet PCs need a fast text entry method. 
Unfortunately both handwriting and speech recognition are 
limited by low speed and recognition problems [2, 5]. As a 
result the HCI community has researched alternative 
methods of efficient text entry. These can roughly be 
divided into three broad categories: the stylus keyboard, 
gesture-based text entry, and intelligent text entry systems. 

 
The Stylus Keyboard 
One approach is the stylus keyboard, also known as on-
screen, graphical, virtual or soft keyboard. The obvious 
need is to miniaturize the QWERTY desktop keyboard. 
QWERTY was designed to prevent mechanical jamming in 
typewriters. As a result, the inventor C. L. Sholes 
deliberately distributed the frequent letter key combinations 
as far apart as possible on the left and right sides of the 
keyboard. When using a single point input device, such as a 
stylus, this results in frequent zigzag movements from the 
left to the right—clearly a suboptimal solution for pen 
entry. As a result, much effort has been invested in 
optimizing the stylus keyboard for stylus tapping. 
Getschow et al. [3] pioneered the approach of minimizing 
the statistical movement distance between the keys based 
on digraph frequencies. MacKenzie and Zhang [8] used 
such a model to heuristically derive a better stylus 
keyboard. Zhai et al. [12] introduced algorithmic methods 
of finding near optimal stylus keyboards, also incorporating 
other desirable properties such as maintaining a semi-
alphabetic ordering among the keys and connecting 
frequently used words. Such a keyboard was dubbed 
ATOMIK (see Figure 2) and has a theoretically estimated 
text entry peak rate of 45 wpm. 

Gesturing Text 
A fundamentally different approach to computer text input 
is to let users write or gesture the text using the pen. Such 
an approach may be more natural to users since it utilizes 
the affordances of the pen better. The straight-forward 
approach is to let the users handwrite each individual letter, 
as in for example Jot, the single letter text entry method on 
Microsoft Pocket PC. However, the individual letters in 
natural alphabets, such as the Roman alphabet, are 
unnecessarily complex, and the slow text entry speed can 
be improved by simplifying the letters. For pen-computing 
an early approach is the well-known Unistrokes alphabet 
[4] that defines simplified gestures for the letters, giving the 
most frequent letters the simplest gestures. Another 
important design consideration in Unistrokes is the explicit 
delimitation of characters by designing every gesture to be 
entered as a single stroke, thereby avoiding the difficult 
segmentation problem in handwriting altogether. Since 
Goldberg and Richardson presented Unistrokes many 
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alternative gesture based methods have been proposed. See 
[14] for a recent overview. 

Intelligent Text Entry Systems 
The previously described approaches all let the user input 
each character verbatim. However, character frequencies 
are not uniformly distributed, a fact Shannon used in 
demonstrating his seminal work on information theory [9]. 
Means of interactively exploiting language regularities in 
pen-based text entry have also been explored in the HCI 
community, both in gesturing and stylus keyboarding. A 
particularly intriguing example is Dasher [10], where the 
user slides a stylus (or other pointing device, such as an 
eye-tracker) towards different dynamic areas representing 
characters to be inputted, whose size dynamically changes 
depending on the probability of the character represented 
by the area appearing after the system’s previous output. 
However Dasher demands constant visual attention from 
the user since the user has to visually scan a dynamically 
changing graphical scene. 

SHORTHAND WRITING ON A STYLUS KEYBOARD 
In an attempt to make exploitation of language regularities 
a natural component of text entry, Zhai and Kristensson 
[13] present a text entry technique that combines gesturing 
and stylus keyboarding, dubbed SHARK (Shorthand Aided 
Rapid Keyboarding). It is based on an observation in stylus 
keyboard research that for the most common words, users 
tend to remember the pattern of the word [11]. For the most 
frequent words ( 200100 −≈  words) SHARK defines 
shorthand gestures, called sokgraphs [14] that are single 
stroke gestures traced by the letter keys comprising a word. 
Figure 1 shows the word the as a sokgraph (note that 
sokgraphs are recognized independent of scale and 
translation in SHARK). The rest of the vocabulary is typed 
using a stylus keyboard. According to the well known 
Zipf’s law, about 50% of the word occurrences in English 
are composed of the 100 most frequent words, hence 
SHARK offers a potential speed-boost compared to ordinary 
stylus keyboards for about half of the text mass. 

 
Figure 1: The word “the” as a sokgraph on the 
ATOMIK layout (shown in Figure 2). The circle 
indicates the start position. 

 
Motivating Principles 
Zhai and Kristensson [13] present five motivating 
principles for SHARK: 

• Scale and location independency: SHARK recognizes 
sokgraphs independent of scale and translation, hence the 
writing need not be visually guided. 

• Efficiency: SHARK is efficient compared to handwriting 
or specialized alphabets. In SHARK a single stroke 

denotes an entire word, compared to for example the 
Unistrokes alphabet, where one stroke equals one 
character. Also, SHARK is preferably defined on an 
optimized stylus keyboard such as ATOMIK [14], thus 
making SHARK movement efficient. 

•  Duality: SHARK uses dual methods of input, both 
optimized stylus keyboarding which can be used to enter 
any word, and sokgraphs for the most frequently used 
words in the language. 

•  Zipf’s law effect: Zipf’s law tells us that defining 
sokgraphs for only the most frequently used words would 
still yield a significant speed increase in about 50% of the 
writing.  

•  Transition from tapping to gesturing: The mapping 
between a sokgraph and its tapping pattern (serially 
tapping the letter keys of the word) is similar. Hence a 
user may decide to start writing the sokgraph instead of 
tapping the word, once the user has learned the pattern of 
the word. 

 
Feasibility of the SHARK paradigm 
Zhai and Kristensson [13] also conducted a feasibility study 
showing that users could learn about 15 sokgraphs per 45 
minute training session. Hence, although artificial, SHARK 
seems to be easy to learn for users never exposed to the 
system before. 

SHARK2 
Paradigm Shift 
While we believe SHARK to be a system demonstrating 
great potential in pen-based text writing, we later realized 
that much improvement could be made in the paradigm. A 
critical weakness in SHARK is the alternation of tapping 
and gesturing, which not only complicates the text entry 
process, but also is an obstacle towards a gradual and 
smooth transition from novice to expert performance in 
going from serially tapping the letter keys, to gesturing the 
sokgraph. Both visually and kinematically, tapping and 
gesturing are distinctively different actions. Hence, the 
duality principle mentioned earlier, might not be as 
advantageous in practice as initially believed [13]. For this 
reason Kristensson and Zhai [6] revised the SHARK 
paradigm to allow all words in a large vocabulary 
( 000,20000,10 −≈  words) to be gestured directly. 

 
 

Figure 2: The user is writing “using” on the ATOMIK 
layout using the SHARK2 system. 

 
Multi-channel Recognition Architecture 
To develop a system capable of efficiently searching among 
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thousands of sokgraphs is a serious challenge for primarily 
three reasons. The first reason is that there is no natural 
source of sokgraphs to collect, thus we cannot use 
traditional well-understood data-driven methods to devise 
our classifier (see [1] for a recent review of such methods). 
The second reason is that we do not know which of the 
many features of the SHARK system (shape of the 
sokgraphs, the absolute location, number of corners, etc.) 
that are actually both efficient in separating sokgraphs from 
a computational stand-point, and are intuitive to the user. 
The third reason is that even if suppose we do know the 
most efficient features of the sokgraphs and have developed 
classifiers to recognize them, there is as of today no method 
of integrating multiple-classifier scores in a sound 
mathematical way that does not require training data. In 
essence we have a bootstrap problem: we need data to use 
the well-understood methods of pattern classification, but 
since our input system is novel, no such data exists, and 
cannot exist if we never build a working system in the first 
place. 

To handle this challenge Kristensson and Zhai [6] 
developed a multi-channel recognition architecture where 
each channel does not necessarily have enough 
discriminative power on its own, but the combination (or 
integration) of the channels results in high-accuracy 
matches. The primary recognition channels are shape and 
location, where the shape channel examines the overall 
normalized shape similarity and calculates a score (due to 
space concerns we refer the reader to [6] for the details), 
and the location channel measures the absolute position of 
the user’s pen trace on the stylus keyboard. In essence, 
preference is given to sokgraphs that are positioned closer 
to the user’s pen trace (see [6] for the details). This can be 
viewed as a relaxation of the Scale and location 
independence principle in the original SHARK system, and 
was necessary to separate the large amount of possible 
sokgraphs now available. 

Dynamic Channel Weighting. A “tweak” in the channel 
architecture is that the weighting of the location channel 
depends on the user’s writing speed. For each word we 
calculate a Fitts’ law estimation of the normative writing 
time. If the user is slower than this amount, we assume the 
user used visual attention when writing the word and hence 
we increase the weight of the location channel. Great care 
must be used when doing this kind of dynamic weighting 
because we do not want rare words (but which happens to 
be slightly more similar in shape to the input trace) to be 
given preference for a much more common (and thus more 
likely) word that is closer in location, just because the user 
produced a fast sokgraph. This is particularly true for a very 
short word, such as “as”, that has many close neighbors on 
the ATOMIK layout, for example “cop”, “coop” and “co”. 

Channel Integration 
As previously stated there is no known mathematically 
sound method of integrating channel scores. However, a 

reasonable assumption is that the distance from the user’s 
input to a template gesture follows a Gaussian distribution. 
Under this assumption we can integrate the channels using 
the Gaussian probability density function, where the mean 
is zero, and the standard deviation can be seen as a 
parameter weighting the contribution of the channel (see [6] 
for more details). 

Language Models 
Although we are satisfied with the performance of the 
SHARK2 system some confusions and recognition mistakes 
cannot be avoided. Also, the user may write a sokgraph too 
“sloppy”, making a “correct” classification difficult. Some 
degree of confusion also stems from the fact that short 
sokgraphs (two or three letters) can be partly or completely 
ambiguous when the lexicon is large enough. An example 
is the word “the” that has some nearest neighbors that are 
close in both shape and location such as “whig”, “old” and 
“thee” on the ATOMIK layout. “thee” is in fact completely 
ambiguous to “the”. To resolve such issues the current 
SHARK2 system uses a language model that computes the 
bigram probabilities of the words in the N-best list given 
the previous word outputted from the system. The highest 
ranked word is then returned to the user. 

FEEDBACK AND OUTPUT INTERFACES 
All recognition based systems can occasionally make errors 
and SHARK2 is not an exception in that regard. Some errors 
can be automatically corrected by a higher-order language 
model as discussed above. Other errors are more difficult to 
correct and require user intervention. Errors can be 
attributed to either the user or the recognizer, or both. The 
user can make an error by for example misspelling the word 
(tracing incorrect letter keys) or simply writing the 
sokgraph too imprecise, making accurate recognition 
impossible. The recognizer can make an error by having a 
too imprecise input in a too crowded classification space. 

Morphing 
To partly prevent the user errors we morph the user’s pen 
trace towards the sokgraph that was recognized by the 
system. Since the key components of the system are based 
on the geometrical shape and location proximity, by 
looking at the animation the user gets a partial 
understanding of why the input trace was classified as that 
particular sokgraph. 

N-best List Selection 
To handle recognition errors, we mark all words outputted 
by the system that have other highly probable candidates 
with a distinct background color. When the user presses the 
stylus on such a word a linear N-best list pops up. The user 
can now drag the stylus toward any desired candidate in the 
list. The selection is finalized by lifting the stylus. We 
chose to use a linear list rather than a pie menu because it 
was found in an early feasibility study that pie menus suffer 
from the user’s hand obscuring half the pie. A linear menu 
can pop up to the left or the right of the invocation point 



depending on whether the user is left or right handed. 

EVALUATION 
Extensive evaluation of a text entry system such as SHARK2 
is complex for many reasons (see [14] for an in-depth 
discussion on the matter). First, a task that is sufficiently 
natural but highly measurable has to be selected. Second, 
the issue of whether to allow users to correct their input or 
not is difficult: should we allow or force the users to correct 
their input and in that case how do we take these 
corrections into account when calculating the final 
performance scores? Third, the amount of training time 
taken by the users obviously affects the user’s performance. 
We cannot know where a user’s performance levels off 
until we actually reach that training point. Hence a time-
consuming longitudinal study is needed to thoroughly 
evaluate the system. Although I do plan to conduct such a 
study, currently we only have expert estimates gathered 
from letting two users repeatedly write a particular set of 
words as fast as they can. These “expert speed” estimates 
ranges from 44-110 wpm for different sentences. The 
lowest score of 44 wpm was obtained by letting a user 
repeatedly (and completely correctly) write the sentence 
“The quick brown fox jumps over the lazy dog” using a 
20,000 words large lexicon. It is worth mentioning in this 
context that the theoretical maximum speed obtainable by 
the optimized stylus keyboard ATOMIK is estimated to 
about 45 wpm. Hence, the system shows great potential as a 
faster alternative for text entry on pen-based computers. 

CONCLUSIONS AND FUTURE WORK 
We have shown that pattern matching on stylus keyboards 
is a powerful concept that can be used to devise efficient 
and easier to learn shorthand writing systems. In addition 
we have shown how to engineer such a system for a large 
vocabulary. We have also presented interaction and 
visualization techniques to ease the user experience of 
pattern matching text entry systems such as SHARK or 
SHARK2. Finally we have presented results from user 
evaluations indicating that users can learn sokgraphs in 
reasonable time, and that the potential expert speed 
performance exceeds the one theoretically estimated for 
optimized stylus keyboards. Currently I am working on 
minimizing the memory and CPU usage of the system, to 
make it possible to run the system with a very large 
vocabulary (about 57,000 words) and limited computing 
power. I plan to release a full version of SHARK2 to the 
public and collect some real usage data by letting users 
voluntary allow the software to report their average speed 
and mean number of corrections. Future work will be 
concentrated on doing extensive user evaluation of initial 
learning time, user acceptance and generally the practical 
performance obtained by users using the SHARK2 system in 
their natural environment. Experiences from these 
evaluations will guide future development and refinements 
of the system. 
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