Development Guide for UIST 2001 Ul Design Contest

Authors: Marty Frenzel, Kathy Ryall, Joe Marks
Last updated: 4/05/01

1

Contest Overview
- Objective

- Location

- Tournament

- How to Enter

Game Overview

- Objective

- Scoring

- Designing the Interface

Game API
- UML Class Diagram
- CORBA Wrapper

Explanation of Reference User Interface
- System Requirements

- Client Requirements

- Insallation

- Running the Server and Interface

- Playing The Game

- Defining XML Files

- Common Problems

Appendix A: IDL Definition File for Game Application

~N O o101 o1 01Ol FENE N www NNNN

oo

CONTEST OVERVIEW

Objective

UIST 2001 will feature the first UIST Interface Design Contest. Contestants will have an opportunity to
design and implement an interface to a real-time game application prior to the symposium. The game has
been designed to accommodate a wide range of possible interfaces. During the competition contestants
will usetheir interfaces to play the game against other contestantsin a tournament. Prizes worth an
estimated $2500 will be awarded to the winners. The goal of the contest is to encourage participants to
explore interface software and technology in an applied setting, and to provide an opportunity for
participants to showcase their work to the UIST community in an exciting and entertaining format.

L ocation

The contest will be held during the opening reception of the 14th Annual ACM Symposium on User
Interface Software and Technology (UIST 2001), which will be held in Orlando, Florida from November
11-14, 2001. For more information on the conference please visit the UIST web site,
http://www.acm.org/uist.

Tournament

The goal of the design contest is to design the best interface you can for the application described below,
and then to use your interface in competition with other design teams who will use their own interfaces.
Participants are encouraged to develop original Ul techniques and/or devicesto gain a competitive
advantage. Novd visualizations of the game situation; pen-based input techniques; two-handed input
techniques, PDA-based multi-user interfaces; incorporating various forms of artificial intelligence into the
interface: these ideas and more are all appropriate for inclusion in your Ul design. The only requirement is
that your Ul communicate with the game application through the API described bel ow.

At each round in the tournament winners will be determined by their game scores. The highest-scoring
participantsin a given round will advance to the next round. Note that for each round in the competition
the game becomes progressively more difficult, as explained below. The ultimate winner will be the last
group not eiminated. Additional prizeswill be awarded to the best single-user Ul and to the best Ul
designed by an all-student team.

How to Enter

Toreserve a place in the contest, contestants must submit an entry form to the Conference Chair no later
than Friday, October 12, 2001. Entry formswill be available online, starting in September. An Ethernet
LAN will be provided for contestants to connect to the game server. Contestants are required to be present
at the conference and to provide al hardware and software required for running their interface and for
connecting it to the LAN hub.

GAME OVERVIEW

Objective

The gameis played on arectangular field populated with several obstacles (see Figure 1). Thesize,
number, and location of obstacles may vary between rounds of the competition. A contestant will start with
several playerslocated arbitrarily on the board. The objectiveisto move as many of these players as
possibleto thefinish line. The starting location and maximum speed of the contestant’s players will vary
between rounds of the competition. The contestant will start each round with atotal of five players. The
computer opponent starts the game with several playerslocated arbitrarily on the board. The number,
location, and maximum speed of the opponent’s players will vary between levels of the competition. The
opponent’ s players move toward the competitor’s players whenever they have an unobstructed view of
them; otherwise the opponent’ s players move randomly. The velocities of the contestant’s players are
controlled via hig’her user interface. If one of the opponent’ s players contacts any of the contestant’s
players, the contestant’s player is captured and can no longer move. A game ends when ether al the
contestant’ s players have been caught or crossed the finish line, or when time has expired.

Scoring

A contestant’s score is the number of players that successfully reach the finish line. In the event of atie,
the time at which the contestant’ s last player crossed the finish line will be used to determine the winner,
with an earlier time beating alater time.

o @ o
Playing board ®
Contestant’ s
players Finish line:
Contestant
Computer’s triesto move
players players over
advance thefinish
toward Q Obstacles line without
Contestant’s being caught
players v_vhen by the
thereisan Computer’s
v?gzbt?ertsvcg Computer’s players.
the two. plEER L (]
@ @

Figure 1: The Playing Field

Designing the Interface

There are no constraints on the design of your Ul, except that it must communicate with the game
application through the API provided. We have provided areference interface to illustrate the use of the
API. While our implementation isin Java and runs on a standard PC or Unix computer, your interface may
be implemented in a language of your choosing, running on any hardware you would like to use. The game
isstructured as a client-server application. Client-server communication is conducted via the Common
Object Request Broker Architecture (CORBA), although you do not need to know much about CORBA to
make use of the Java API that we provide While the tournament will be run in a distributed environment
over alocal-area network, the gameis structured so that development may be done on either asingle
computer or in adistributed environment.

1 If you use another language, you will need to learn alittle about CORBA — see the next section.

GAME API

UML Class Diagram

An APl isprovided for the game and contestants are required to program to that model. A UML-class
design diagram of the gameis provided below. Of particular interest are the methods provided by the
GameBrain interface. These methods define how communication happens with the game server. Data
types for properties are specified as Interface Design Language (IDL) data types.

GameBrain
(Interface)

startGame() : Game
‘ getCurrentState() : Game ‘
updatePlayers() : void
getGameResults() : GameResult

getMaxAllowablePlayerXVelocity() : double
getMaxAllowablePlayerY Velocity() : double

1

1

Game

Interf
LIntertace) GameResult

getBoard() ; Board ‘— (Interface)

getCurrentTime() : long long)

; . getNumberWinners() : long
getEndTime () - long long getNumberCaught() : long
getNumberUnfinished() : long

1 getElapsedTime() : long long
wasSuccessful () : boolean
Board getLastCrossTime() : long long
(Interface) getResultDetail() : string

getContestantPlayers() : Player[]
getOpponentPlayers() : Player[]
getObstacles() : Obstacl€]]
getWidth() : long

getHeight() : long

1+ 1+
Player Obstacle
(Interface) (Interface)
ggl)?(c) oo I'Igng_ on getXCoord() : long
getYCoordg :Iong get\égdqors(d)() :Ilong
: etRadius() : lon
getXVelocity() : double 9 9

getYVelocity() : double
getRadius() : long
isCaptured() : boolean
isWinner() : boolean

Figure2: UML Class Diagram of Game Application

CORBA Wrapper

Client-server communication is provided by the CORBA pratocol. We have provided Java wrappersto
CORBA, so no familiarity with CORBA isrequired if you use Javato implement your interface. People
who want to use another programming language will need some familiarity with CORBA in order to
include its functionality in your program. For more information on CORBA see!

= http://www.omg.org — homepage for the Object Management Group, the designers and
maintainers of CORBA.
= http://www.omg.org/gettingstarted/corbafag.htm: the CORBA FAQ.

The IDL filefor the game can be found in Appendix A of this document. In addition to providing a more
detailed view of the classes, methods, and exceptions involved with the game, the IDL file should be used
asthe starting point for your 1DL-to-programming-language conversion. If your Ul will bein alanguage
other than Java, you will need to perform this conversion. However, if your Ul isin Java, you can just
import the classes included with the reference implementation Ul.

EXPLANATION OF REFERENCE USER INTERFACE

The server side of the game has been provided to you along with a reference implementation Ul that should
be used to familiarize yourself with the game. These contents are packaged in a zip file that may be
downloaded and installed using the following instructions.

Server Requirements

Any Java-compliant operating system
JOK1.3

128 MB RAM

Pentium I1 350 MHz processor

Client Requirements

= Any Java-compliant operating system

JDK1.3

64 MB RAM

Pentium I1 350 MHz processor

Can be the same machine as the server for devel opment purposes

Installation
1. Download zip file from http://www.acm.org/uist/contestO1.
2. Unzip thefileinto atemporary directory. This step should create the following file structure:

UISTgame/
[/startServer.bat starts CORBA naming service and game server on MS Windows
/startDisplay.bat gtarts game Ul on MS Windows
/startServer.sh starts CORBA naming service and game server on UNIX
/startDisplay.sh starts game Ul on UNIX
/game_1.0.idl IDL filewith class definitions and full method signatures
/lib/classes.jar jar file containing required game classes
Nlib/xml.jar jar file containing required xml classes for game setup
/medial/caught.wav sound file that is played when a player is caught
/xml/game_1.0.dtd DTD file used to validate syntax of setup XML files
/xml/setup.xml asample XML setup file to define the start state of the game

/src/game/Display.java source code for the Java Ul reference implementation

Running the Server and Interface
The client and server can be on the same or on different Windows machines. Running the client and server
under Unix issimilar.
1. Open acommand prompt and cd into the Ul STgane directory.
2. If working on UNIX, set execute permissions on the scripts by running this command:
chnod +x *.sh
3. Start the CORBA naming service and the server with this command:
.\start Server. bat (./startServer.sh on UN X)
4. Start the Display with the command:
.\startDisplay.bat (./startDi splay.sh on UN X)

Alternatively, you could ignore the scripts and type the full commands:

1. Open acommand prompt and cd into the Ul STgane directory.

Running the Server and Interface (cont’d)

2. Start the CORBA naming service with the command:
tnameserv —ORBl nitial Port <port>
3. At asgparate command prompt, cd into the Ul STgame directory and start the game server with the
command (all on oneline):
java -classpath .\lib\classes.jar;.\lib\xm.jar; %l asspat h%
gane. GaneSetup -xm File .\xm\setup.xm [-ORBInitial Port <port>]
[-ORBInitial Host <host>]

4. At athird command prompt, cd into the Ul STgane directory and start the game Display with the
command (all on oneline):
java -classpath .\lib\classes.jar; %l asspat h%

gane.Display [-ORBlnitial Port <port>] [-ORBInitial Host <host>]

Helpful tips:

If running on a UNIX machine, the classpath specification must bein UNIX format as shown below
-classpath ./lib/classes.jar:./lib/xm.jar: $CLASSPATH

guotation marks, eg. “ %&l asspat h% , may berequired if your classpath contains directories with

spaces in the name

thet nanmeser v utility can be found in the <jdk1.3>/bin directory

the naming service, game server, and game display can al be run on different machines. To

accomplish this, usethe—ORBI ni t i al Host and—CRBI ni ti al Port argumentsto specify the

machine and port, respectively, that the naming serviceisrunning on. By default, the naming service

gtartson port 9999. This port requires root user access on UNIX. Therefore, if the naming serviceis

run on a UNIX machine, you may be required to specify the—ORBI ni t i al Port argument.

Playing the Game

At startup, a brief description of the gameis presented. Click on the button to start the game. Contestant
players (pastel colors) are aligned at the top of the screen and opponent (computer) players are the blue
circles at the bottom of the screen. Y ou can use the up, down, left, and right arrows on your keyboard to
control the velocities of the contestant players so asto move them over the cyan line at the bottom of the
screen. There arefive contestant playersto control. To control player 1, pressthe ‘1’ key on the keyboard
and then use the arrow keys; to control player 2, pressthe ‘2’ key on the keyboard and then use the arrow
keys, and so on for the other players. Of coursethisisnot a very usable interface, but it can serveasa
gtarting point for the development of your own interface.

Defining XML Files

The starting configuration for agameis defined by the XML file located at

U STgane/ xm / set up. xm . You are encouraged to play with this XML file to experiment with new
game configurations and vary settings such as the game duration, maximum velocities of players, and
number of opponents/ obstacles. However, there are several restrictions to be aware of when modifying
thefile:

Thefile must list exactly 5 <contestant> tags.

Thefile can list no more than 10 and no less than 1 <opponent> tags.
Thefile can list no more than 10 and no less than 1 <obstacle> tags.
The file must be well formed with respect to the xml/game_1.0.dtd file.

In order for the application to pick up changesto the XML file, you must stop and restart the GameSetup

class (startServer script, or step 3 from above).

IMPORTANT: at the UIST competition, configuration settings will be controlled by game administrators
and not by contestants. Accordingly, user interfaces should be designed to accommodate many different

game configurations.

Common Problems
» The game ends prematurely because ‘Deviation exceeds the allowable.’

- Theserver automatically stops a game if the elapsed time between updates of player positions
exceeds the specified maximum elapsed time. NOTE: thiserror ismore likely to occur on sower
machines and machines with insufficient RAM.

- Suggested solution: use a machine with a faster CPU and/or allocate more RAM to the java server
process with the ‘—Xmx’ argument. For example, use the command:

java —Xmx192m -cl asspath ./lib/classes.jar;./lib/xm.jar; %l asspat h%
gane. GaneSetup -xm File ./xm/setup.xm [-ORBInitial Port <port>]
[-ORBInitial Host <host > |

» Thedisplay failswith ‘COMM_FAILURE'’ trying to start the game.
- Thedisplay can not contact the game server.
- Suggested solution: check the status of the game server.

» Thenaming service (t nameser v) does not start on UNIX.
- By default, the naming service starts on port 9999. This port requires root user access on UNIX.
Therefore, if you do not have root priviledges, you must specify the—ORBI ni t i al Por t
argument. For example,

tnanmeserv —CRBl nitial Port 27790 &

APPENDIX A: IDL DEFINITION FILE FOR GAME APPLICATION

1
/I Thisfile contains the IDL specification for the gamethat isto

/I be part of a user interface design competition at the UIST '01

/I conference in Orlando, Florida.

I

/I The objective of the gameis for a contestant to move their players
/I across a playing field without being caught by the opponent.

I

/I Author: Marty Frenzel

/[Version: 1.3

/I Date: April 26, 2001

I

module game {

/I define the Player interface
1
interface Player

{

/I returns the unique id number of this player
long getld();

/I returns the X coordinate of the center of this player
long getX Coord();

/I returnsthe Y coordinate of the center of this player
long getY Coord();

/I returns the X velocity of this player
double getXVeocity();

/I returnsthe Y velocity of this player
double getY Veocity();

[l returnsthe radius (in pixels) of this player
long getRadius();

/I returnstrue if this player has been captured
bool ean isCaptured();

/I returnstrueif this player has crossed thefinish line
bool ean isWinner();

1

/l define an array of Players
1
typedef sequence<Player> PlayerArray;

/I define the Obstacl e interface
I
interface Obstacle

{

/I returnsthe X coordinate of the center of the obstacle
long getX Coord();

/] returnsthe Y coordinate of the center of the obstacle
long getY Coord();

/I returnsthe radius (in pixels) of this obstacle
long getRadius();
H

/I define an array of Obstacles
1
typedef sequence<Obstacle> ObstacleArray;

/I define the Board interface

// the Board class holds a complete snapshot of all Players and all obstacles; aswell asthe
I/l height and width of the board

1
interface Board

{

/I the Playersthat are controlled by the Contestant
PlayerArray getContestantPlayers();

/I the Playersthat are controlled by the Computer
PlayerArray getOpponentPlayers();

/I the Obstacles that exist
ObstacleArray getObstacles();

/I returns the width of the board
long getWidth();

/I returns the height of the board
long getHeight();
H

/I define the Game interface
/I the Game class holds a Board; as well as atimestamp indicating the current timeand a
/I timestamp indicating the time at which the game will end. Both timestamps are
I specified as times on the Server machine
1
interface Game {
/I returns the Board associated with this game
Board getBoard();

/I timestamp (milliseconds) indicating the current time
/I on the server when GameBrain.getCurrentState() was called
long long getCurrentTime();

/I timestamp (milliseconds) indicating time on server when game will end
long long getEndTime();

/I define the GameResult interface

/I the GameResult holds information about the outcome of a game
1
interface GameResult

{

/I number of players who crossed the finish
long getNumberWinners();

/I number of players who were caught by opponent
long getNumberCaught();

/I number of playerswho didn't cross the finish and
/I weren't caught
long getNumberUnfinished();

/I dapsed amount of time the game took (milliseconds)
long long getElapsedTime();

/I indicates whether game finished properly or an error occured
bool ean wasSuccessful ();

/I if the game terminated unsuccessfully, thisis a description
/I of what happened
string getResultDetail ();

/l time at which the last player to crossthefinish line did so
long long getLastCrossTime();

1

/I define the exception thrown if the Contestant attempts to

/I update settings for an invalid Player

1

exception InvalidP ayerException{
string mMessage;

h

/I define the Exception thrown if the contestant triesto set
/I aPlayer's velocity outside of the allowable velocity range
1
exception InvalidV e ocityException{
string mM essage;
h

/I define the exception that isthrown if a method is called which activates
/I activity in the server that should not occur while agameis running

1
exception GameRunningException{ };

/I an exception that isthrown if the gameis not running and someone calls

Il getCurrentState() on the GameBrain

1

exception GameNotRunningException{
string mM essage;

h

10

/I define the Brain that controls the game and monitors

/I Player'slocations, etc.

/I user interfaces will lookup a GameBrain in the CORBA naming service and then
/[use that brain to interact with the game.
1
interface GameBrain{

/I used to obtain a current snapshot of the Game
Game getCurrentState()
rai ses (GameNotRunningException);

/I used to update the state of a Contestant's Player

/I throws InvalidPlayerException if the specified Playerld does not correlate to a

// valid Player.

/I throws InvalidV e ocityException if the specified exception is

/I outside the range of the allowable vel ocities.

/I NOTE: therange of allowable vel ocities may vary from game to game.

void updatePlayer(in long mPlayerld, in double mNewXVel ocity, in double mNewY Vel ocity)
raises (InvalidPlayerException, InvalidV e ocityException, GameNotRunningException);

/I returns the current max allowable Player velocity in the X direction
double getMaxAllowablePlayer X Ve ocity()
rai ses (GameNotRunningException);

/I returns the current max allowable Player velocity in the Y direction
double getMaxAllowablePlayerY Ve ocity()
rai ses (GameNotRunningException);

/I returns the current max allowable opponent velocity in the X direction
double getMaxAllowableOpponentXV el ocity()
rai ses (GameNotRunningException);

/I returnsthe current max allowable opponent velocity in the Y direction
double getMaxAllowableOpponentY Ve ocity()
rai ses (GameNotRunningException);

I/ used to start the Game
Game startGame()
rai ses (GameRunningException);

/l used to retrieve the results of the last game that was run
/I this method is only valid between games
GameResult getGameResults()
rai ses (GameRunningException);
H

}; /Il end of module game

11

