
1

Development Guide for UIST 2001 UI Design Contest
Authors: Marty Frenzel, Kathy Ryall, Joe Marks
Last updated: 4/05/01

1. Contest Overview
- Objective 2
- Location 2
- Tournament 2
- How to Enter 2

2. Game Overview
- Objective 3
- Scoring 3
- Designing the Interface 3

3. Game API
- UML Class Diagram 4
- CORBA Wrapper 4

4. Explanation of Reference User Interface
- System Requirements 5
- Client Requirements 5
- Installation 5
- Running the Server and Interface 5
- Playing The Game 5
- Defining XML Files 6
- Common Problems 7

Appendix A: IDL Definition File for Game Application 8

2

CONTEST OVERVIEW

Objective
UIST 2001 will feature the first UIST Interface Design Contest. Contestants will have an opportunity to
design and implement an interface to a real-time game application prior to the symposium. The game has
been designed to accommodate a wide range of possible interfaces. During the competition contestants
will use their interfaces to play the game against other contestants in a tournament. Prizes worth an
estimated $2500 will be awarded to the winners. The goal of the contest is to encourage participants to
explore interface software and technology in an applied setting, and to provide an opportunity for
participants to showcase their work to the UIST community in an exciting and entertaining format.

Location
The contest will be held during the opening reception of the 14th Annual ACM Symposium on User
Interface Software and Technology (UIST 2001), which will be held in Orlando, Florida from November
11-14, 2001. For more information on the conference please visit the UIST web site,
http://www.acm.org/uist.

Tournament
The goal of the design contest is to design the best interface you can for the application described below,
and then to use your interface in competition with other design teams who will use their own interfaces.
Participants are encouraged to develop original UI techniques and/or devices to gain a competitive
advantage. Novel visualizations of the game situation; pen-based input techniques; two-handed input
techniques; PDA-based multi-user interfaces; incorporating various forms of artificial intelligence into the
interface: these ideas and more are all appropriate for inclusion in your UI design. The only requirement is
that your UI communicate with the game application through the API described below.

At each round in the tournament winners will be determined by their game scores. The highest-scoring
participants in a given round will advance to the next round. Note that for each round in the competition
the game becomes progressively more difficult, as explained below. The ultimate winner will be the last
group not eliminated. Additional prizes will be awarded to the best single-user UI and to the best UI
designed by an all-student team.

How to Enter
To reserve a place in the contest, contestants must submit an entry form to the Conference Chair no later
than Friday, October 12, 2001. Entry forms will be available online, starting in September. An Ethernet
LAN will be provided for contestants to connect to the game server. Contestants are required to be present
at the conference and to provide all hardware and software required for running their interface and for
connecting it to the LAN hub.

3

GAME OVERVIEW

Objective
The game is played on a rectangular field populated with several obstacles (see Figure 1). The size,
number, and location of obstacles may vary between rounds of the competition. A contestant will start with
several players located arbitrarily on the board. The objective is to move as many of these players as
possible to the finish line. The starting location and maximum speed of the contestant’s players will vary
between rounds of the competition. The contestant will start each round with a total of five players. The
computer opponent starts the game with several players located arbitrarily on the board. The number,
location, and maximum speed of the opponent’s players will vary between levels of the competition. The
opponent’s players move toward the competitor’s players whenever they have an unobstructed view of
them; otherwise the opponent’s players move randomly. The velocities of the contestant’s players are
controlled via his/her user interface. If one of the opponent’s players contacts any of the contestant’s
players, the contestant’s player is captured and can no longer move. A game ends when either all the
contestant’s players have been caught or crossed the finish line, or when time has expired.

Scoring
A contestant’s score is the number of players that successfully reach the finish line. In the event of a tie,
the time at which the contestant’s last player crossed the finish line will be used to determine the winner,
with an earlier time beating a later time.

Designing the Interface
There are no constraints on the design of your UI, except that it must communicate with the game
application through the API provided. We have provided a reference interface to illustrate the use of the
API. While our implementation is in Java and runs on a standard PC or Unix computer, your interface may
be implemented in a language of your choosing, running on any hardware you would like to use. The game
is structured as a client-server application. Client-server communication is conducted via the Common
Object Request Broker Architecture (CORBA), although you do not need to know much about CORBA to
make use of the Java API that we provide.1 While the tournament will be run in a distributed environment
over a local-area network, the game is structured so that development may be done on either a single
computer or in a distributed environment.

1 If you use another language, you will need to learn a little about CORBA – see the next section.

Contestant’s
players

Obstacles

Finish line:
Contestant
tries to move
players over
the finish
line without
being caught
by the
Computer’s
players.

Computer’s
players

advance
toward

Contestant’s
players when

there is an
unobstructed

view between
the two.

Computer’s
players

Playing board

Figure 1: The Playing Field

4

GAME API

UML Class Diagram
An API is provided for the game and contestants are required to program to that model. A UML-class
design diagram of the game is provided below. Of particular interest are the methods provided by the
GameBrain interface. These methods define how communication happens with the game server. Data
types for properties are specified as Interface Design Language (IDL) data types.

Figure 2: UML Class Diagram of Game Application

CORBA Wrapper
Client-server communication is provided by the CORBA protocol. We have provided Java wrappers to
CORBA, so no familiarity with CORBA is required if you use Java to implement your interface. People
who want to use another programming language will need some familiarity with CORBA in order to
include its functionality in your program. For more information on CORBA see:

§ http://www.omg.org – homepage for the Object Management Group, the designers and
maintainers of CORBA.

§ http://www.omg.org/gettingstarted/corbafaq.htm: the CORBA FAQ.

Player
(Interface)

getId() : long
getXCoord() : long
getYCoord() : long
getXVelocity() : double
getYVelocity() : double
getRadius() : long
isCaptured() : boolean
isWinner() : boolean

Board
(Interface)

getContestantPlayers() : Player[]
getOpponentPlayers() : Player[]
getObstacles() : Obstacle[]
getWidth() : long
getHeight() : long

Game
(Interface)

getBoard() : Board
getCurrentTime() : long long
getEndTime () : long long

GameResult
(Interface)

getNumberWinners() : long
getNumberCaught() : long
getNumberUnfinished() : long
getElapsedTime() : long long
wasSuccessful() : boolean
getLastCrossTime() : long long
getResultDetail() : string

GameBrain
(Interface)

startGame() : Game
getCurrentState() : Game
updatePlayers() : void
getGameResults() : GameResult
getMaxAllowablePlayerXVelocity() : double
getMaxAllowablePlayerYVelocity() : double

1

1

1

Obstacle
(Interface)

getXCoord() : long
getYCoord() : long
getRadius() : long

1+1+

5

The IDL file for the game can be found in Appendix A of this document. In addition to providing a more
detailed view of the classes, methods, and exceptions involved with the game, the IDL file should be used
as the starting point for your IDL-to-programming-language conversion. If your UI will be in a language
other than Java, you will need to perform this conversion. However, if your UI is in Java, you can just
import the classes included with the reference implementation UI.

EXPLANATION OF REFERENCE USER INTERFACE
The server side of the game has been provided to you along with a reference implementation UI that should
be used to familiarize yourself with the game. These contents are packaged in a zip file that may be
downloaded and installed using the following instructions.

Server Requirements
§ Any Java-compliant operating system
§ JDK1.3
§ 128 MB RAM
§ Pentium II 350 MHz processor

Client Requirements
§ Any Java-compliant operating system
§ JDK1.3
§ 64 MB RAM
§ Pentium II 350 MHz processor
§ Can be the same machine as the server for development purposes

Installation
1. Download zip file from http://www.acm.org/uist/contest01.
2. Unzip the file into a temporary directory. This step should create the following file structure:

UISTgame/
 /startServer.bat starts CORBA naming service and game server on MS Windows
 /startDisplay.bat starts game UI on MS Windows
 /startServer.sh starts CORBA naming service and game server on UNIX
 /startDisplay.sh starts game UI on UNIX
 /game_1.0.idl IDL file with class definitions and full method signatures
 /lib/classes.jar jar file containing required game classes
 /lib/xml.jar jar file containing required xml classes for game setup
 /media/caught.wav sound file that is played when a player is caught
 /xml/game_1.0.dtd DTD file used to validate syntax of setup XML files
 /xml/setup.xml a sample XML setup file to define the start state of the game
 /src/game/Display.java source code for the Java UI reference implementation

Running the Server and Interface
 The client and server can be on the same or on different Windows machines. Running the client and server
under Unix is similar.
1. Open a command prompt and cd into the UISTgame directory.
2. If working on UNIX, set execute permissions on the scripts by running this command:

 chmod +x *.sh
3. Start the CORBA naming service and the server with this command:

 .\startServer.bat (./startServer.sh on UNIX)
4. Start the Display with the command:

 .\startDisplay.bat (./startDisplay.sh on UNIX)

Alternatively, you could ignore the scripts and type the full commands:

1. Open a command prompt and cd into the UISTgame directory.

6

Running the Server and Interface (cont’d)

2. Start the CORBA naming service with the command:
 tnameserv –ORBInitialPort <port>

3. At a separate command prompt, cd into the UISTgame directory and start the game server with the
command (all on one line):
 java -classpath .\lib\classes.jar;.\lib\xml.jar;%classpath%
 game.GameSetup -xmlFile .\xml\setup.xml [–ORBInitialPort <port>]
 [-ORBInitialHost <host>]

4. At a third command prompt, cd into the UISTgame directory and start the game Display with the
command (all on one line):
 java -classpath .\lib\classes.jar;%classpath%
 game.Display [–ORBInitialPort <port>] [-ORBInitialHost <host>]

Helpful tips:
• If running on a UNIX machine, the classpath specification must be in UNIX format as shown below

-classpath ./lib/classes.jar:./lib/xml.jar:$CLASSPATH
• quotation marks, eg. “%classpath%”, may be required if your classpath contains directories with

spaces in the name
• the tnameserv utility can be found in the <jdk1.3>/bin directory
• the naming service, game server, and game display can all be run on different machines. To

accomplish this, use the –ORBInitialHost and –ORBInitialPort arguments to specify the
machine and port, respectively, that the naming service is running on. By default, the naming service
starts on port 9999. This port requires root user access on UNIX. Therefore, if the naming service is
run on a UNIX machine, you may be required to specify the –ORBInitialPort argument.

Playing the Game
At startup, a brief description of the game is presented. Click on the button to start the game. Contestant
players (pastel colors) are aligned at the top of the screen and opponent (computer) players are the blue
circles at the bottom of the screen. You can use the up, down, left, and right arrows on your keyboard to
control the velocities of the contestant players so as to move them over the cyan line at the bottom of the
screen. There are five contestant players to control. To control player 1, press the ‘1’ key on the keyboard
and then use the arrow keys; to control player 2, press the ‘2’ key on the keyboard and then use the arrow
keys; and so on for the other players. Of course this is not a very usable interface, but it can serve as a
starting point for the development of your own interface.

Defining XML Files
The starting configuration for a game is defined by the XML file located at
UISTgame/xml/setup.xml . You are encouraged to play with this XML file to experiment with new
game configurations and vary settings such as the game duration, maximum velocities of players, and
number of opponents / obstacles. However, there are several restrictions to be aware of when modifying
the file:

§ The file must list exactly 5 <contestant> tags.
§ The file can list no more than 10 and no less than 1 <opponent> tags.
§ The file can list no more than 10 and no less than 1 <obstacle> tags.
§ The file must be well formed with respect to the xml/game_1.0.dtd file.

In order for the application to pick up changes to the XML file, you must stop and restart the GameSetup
class (startServer script, or step 3 from above).
IMPORTANT: at the UIST competition, configuration settings will be controlled by game administrators
and not by contestants. Accordingly, user interfaces should be designed to accommodate many different
game configurations.

7

Common Problems
Ø The game ends prematurely because ‘Deviation exceeds the allowable.’

- The server automatically stops a game if the elapsed time between updates of player positions
exceeds the specified maximum elapsed time. NOTE: this error is more likely to occur on slower
machines and machines with insufficient RAM.

- Suggested solution: use a machine with a faster CPU and/or allocate more RAM to the java server
process with the ‘–Xmx’ argument. For example, use the command:

java –Xmx192m -classpath ./lib/classes.jar;./lib/xml.jar;%classpath%
 game.GameSetup -xmlFile ./xml/setup.xml [–ORBInitialPort <port>]
[-ORBInitialHost <host>]

Ø The display fails with ‘COMM_FAILURE’ trying to start the game.
- The display can not contact the game server.
- Suggested solution: check the status of the game server.

Ø The naming service (tnameserv) does not start on UNIX.
- By default, the naming service starts on port 9999. This port requires root user access on UNIX.

Therefore, if you do not have root priviledges, you must specify the –ORBInitialPort
argument. For example,

tnameserv –ORBInitialPort 27790 &

8

APPENDIX A: IDL DEFINITION FILE FOR GAME APPLICATION

// ========================
// This file contains the IDL specification for the game that is to
// be part of a user interface design competition at the UIST '01
// conference in Orlando, Florida.
//
// The objective of the game is for a contestant to move their players
// across a playing field without being caught by the opponent.
//
// Author: Marty Frenzel
// Version: 1.3
// Date: April 26, 2001
// ========================

module game {

 // define the Player interface
// -----------------------
interface Player
{

// returns the unique id number of this player
long getId();

// returns the X coordinate of the center of this player
long getXCoord();

// returns the Y coordinate of the center of this player
long getYCoord();

// returns the X velocity of this player
double getXVelocity();

// returns the Y velocity of this player
double getYVelocity();

// returns the radius (in pixels) of this player
long getRadius();

// returns true if this player has been captured
boolean isCaptured();

// returns true if this player has crossed the finish line
boolean isWinner();

};

 // define an array of Players
// ---

 typedef sequence<Player> PlayerArray;

9

 // define the Obstacle interface
 // -------------------------
 interface Obstacle
 {

// returns the X coordinate of the center of the obstacle
long getXCoord();

// returns the Y coordinate of the center of the obstacle
long getYCoord();

// returns the radius (in pixels) of this obstacle
long getRadius();

 };

 // define an array of Obstacles
 // ---
 typedef sequence<Obstacle> ObstacleArray;

 // define the Board interface
 // the Board class holds a complete snapshot of all Players and all obstacles; as well as the
 // height and width of the board
 // ---
 interface Board
 {
 // the Players that are controlled by the Contestant
 PlayerArray getContestantPlayers();

 // the Players that are controlled by the Computer
 PlayerArray getOpponentPlayers();

 // the Obstacles that exist
 ObstacleArray getObstacles();

 // returns the width of the board
 long getWidth();

 // returns the height of the board
 long getHeight();
 };

 // define the Game interface
 // the Game class holds a Board; as well as a timestamp indicating the current time and a
 // timestamp indicating the time at which the game will end. Both timestamps are
 // specified as times on the Server machine
 // --
 interface Game {

// returns the Board associated with this game
Board getBoard();

// timestamp (milliseconds) indicating the current time
// on the server when GameBrain.getCurrentState() was called
long long getCurrentTime();

// timestamp (milliseconds) indicating time on server when game will end
long long getEndTime();

};

10

 // define the GameResult interface
// the GameResult holds information about the outcome of a game
// ---
interface GameResult
{

// number of players who crossed the finish
long getNumberWinners();

// number of players who were caught by opponent
long getNumberCaught();

// number of players who didn't cross the finish and
// weren't caught
long getNumberUnfinished();

// elapsed amount of time the game took (milliseconds)
long long getElapsedTime();

// indicates whether game finished properly or an error occured
boolean wasSuccessful();

// if the game terminated unsuccessfully, this is a description
// of what happened
string getResultDetail();

// time at which the last player to cross the finish line did so
long long getLastCrossTime();

};

 // define the exception thrown if the Contestant attempts to
 // update settings for an invalid Player
 // ---
 exception InvalidPlayerException{
 string mMessage;
 };

 // define the Exception thrown if the contestant tries to set
 // a Player's velocity outside of the allowable velocity range
 // --
 exception InvalidVelocityException{

string mMessage;
 };

 // define the exception that is thrown if a method is called which activates
 // activity in the server that should not occur while a game is running
 // --
 exception GameRunningException{};

 // an exception that is thrown if the game is not running and someone calls
 // getCurrentState() on the GameBrain
 // --
 exception GameNotRunningException{
 string mMessage;
 };

11

 // define the Brain that controls the game and monitors
 // Player's locations, etc.
 // user interfaces will lookup a GameBrain in the CORBA naming service and then

// use that brain to interact with the game.
// --

 interface GameBrain{

 // used to obtain a current snapshot of the Game
 Game getCurrentState()
 raises (GameNotRunningException);

 // used to update the state of a Contestant's Player
 // throws InvalidPlayerException if the specified PlayerId does not correlate to a
 // valid Player.
 // throws InvalidVelocityException if the specified exception is
 // outside the range of the allowable velocities.
 // NOTE: the range of allowable velocities may vary from game to game.
 void updatePlayer(in long mPlayerId, in double mNewXVelocity, in double mNewYVelocity)
 raises (InvalidPlayerException, InvalidVelocityException, GameNotRunningException);

 // returns the current max allowable Player velocity in the X direction
double getMaxAllowablePlayerXVelocity()

 raises (GameNotRunningException);

 // returns the current max allowable Player velocity in the Y direction
 double getMaxAllowablePlayerYVelocity()
 raises (GameNotRunningException);

// returns the current max allowable opponent velocity in the X direction
double getMaxAllowableOpponentXVelocity()

 raises (GameNotRunningException);

 // returns the current max allowable opponent velocity in the Y direction
 double getMaxAllowableOpponentYVelocity()
 raises (GameNotRunningException);

 // used to start the Game
 Game startGame()
 raises (GameRunningException);

 // used to retrieve the results of the last game that was run
 // this method is only valid between games
 GameResult getGameResults()
 raises (GameRunningException);

 };

}; // end of module game

