
Personalized Adaptive Interfaces

Krzysztof Gajos
University of Washington
Seattle, WA 98195, USA

kgajos@cs.washington.edu

INTRODUCTION
Mass-produced user interfaces are inadequate for today’s
computing needs: interfaces shipped with today’s complex
applications are designed in a “one size fits all” manner and
by aiming to address the needs of theaverageuser they miss
essential needs of mostindividual users. In particular, I note
that:
• users own diverse display-equipped devices, which support

different interaction methods and have displays varying in
size over several orders of magnitude;

• different users use the same software to accomplish differ-
ent tasks;

• people’s work habits change over time;
• users differ in their perceptual, physical and cognitive abil-

ities.

Therefore, I believe that custom-built interfaces need to be
provided for each individual user, reflecting her usual tasks,
preferred interaction devices, abilities and situation context.

My work makes the following contributions:

• Because user’s work patterns and needs change over time,
user interfaces need to be able to evolve to reflect those
changes. While user-driven customization is one way to
accomplish this goal, I show that automatic system-driven
adaptation can be designed in a way that improves both
user satisfaction and performance.

• Individual needs of different users depend on their domi-
nant tasks, devices they use as well as their abilities. In or-
der to provide each user with a custom user interface, those
interfaces need to be generated automatically. The dom-
inant paradigm is to use knowledge-intensive rule-based
techniques. Unfortunately, these techniques require a new
rule base for different devices and even different screen
sizes. Instead, I propose decision-theoretic optimization as
a much more flexible and general approach.

• While optimization-based systems can be re-parametrized
to achieve a variety of different outcomes, choosing the
right parameters for the objective function is a hard prob-
lem. I develop interactions and machine learning tech-
niques that allow non-expert users to quickly produce the
right parameters just by interacting with concrete user in-
terfaces.

Figure 1: An interface for a simple application rendered
automatically by SUPPLE for five different platforms:
a touch panel, an HTML browser, a PDA, a desktop
computer and a WAP phone.

While personalized adaptive interfaces can benefit regular
users, there are two particular user populations – the mobile
and the physically impaired users – that stand to gain even
more from this approach. For mobile users it is technically
possible to use a phone to locate nearby restaurants, check
traffic conditions, find additional product information or ac-
cess bus schedules, but in practice few people use such ser-
vices simply because of the long and awkward interactions
required to access them. Well designed adaptive interfaces
can have large quantitative effects on these users’ perfor-
mance and thus bring about a qualitative change in how mo-
bile users interact with their devices. For people with phys-
ical impairments, a lot of the difficulty in interacting with
computers stems from the fact that the interfaces have been
optimized for the “average” user able to easily manipulate
keyboard, mouse and a small range of screen sizes. Cus-
tom interfaces that take into account less standard interaction
techniques available to some users can make awkward assis-
tive technologies unnecessary or at least easier to use.

I will first describe a system (currently under development)
for automatically generating custom user interfaces for users
with motor and vision impairments and use it to motivate and
illustrate the contributions of this thesis.

AUTOMATICALLY GENERATING CUSTOM UIs FOR USERS
WITH PHYSICAL OR VISUAL IMPAIRMENTS
A number of assistive technologies exist to address the needs
of users with most common physical impairments: screen
readers help blind users, software “magnifying lenses” help
those with poor vision, while eye trackers, custom pointing
devices and speech recognition systems help users with lim-

Copyright is held by the author.
UIST ’06, October 15-18, 2006, Montreux, Switzerland

UIST 2006 Adjunct Proceedings: Doctoral Symposium 23



Adaptive toolbar -->

(a)

(b) (c)

Figure 2: Three adaptive interfaces tested in our experiments (as implemented for Microsoft Word): (a) The Split Interface
copies frequently used functionality onto a designated adaptive toolbar; (b) The Moving Interface movesfrequently used
functionality from inside a popup menu to a top level toolbar; (c) The Visual Popout Interface makes frequently used
functionality more visually salient.

ited motor control. A common property of some of these so-
lutions is that they address a single impairment at a time and
often poorly combine with other assistive technologies. For
example, software magnifying lenses assume a steady point-
ing device (like a mouse) but could be very hard to control
with an eye tracker because of small involuntary eye move-
ments. Furthermore, solutions like the magnifying lenses
have a small number of discrete settings, ignoring the fact
that there is a continuity of vision impairments. Finally, most
of these solutions are poorly integrated with the interfaces
and consequently provide an inefficient way to interact with
the underlying applications. For example, screen readers are
unaware of visual hierarchies of elements in dialog boxes. As
another example, reducing screen resolution – with the in-
tention of helping low-vision users – enlarges all parts of an
interface and not just those that were too small to see clearly,
thus wasting a lot of screen real estate.

In some cases no assistive technology might be required if an
interface is rendered in a way that takes into account a user’s
capabilities. For example, to make an interface accessible to
a user with a moderate vision impairment, it may be suffi-
cient to make all the fonts and important visual cues larger,
while appropriately rearranging the interface to make it fit in
the available screen area. It is not necessary to elongate the
slider tracks, for example, as long as the slider elements are
made larger and the tracks are drawn with a thicker line. Sim-
ilarly, users lacking very fine motor control will find it easier
to interact with interfaces where only widgets with large tar-
gets and no need for dragging are used. In cases when the
use of assistive technologies cannot be avoided, those tech-
nologies also work better with a dedicated GUI design: for
example, users who explore a screen serially (with a magni-
fying lense or a screen reader) might find it easier to navigate
a hierarchically structured interface, where each panel con-
tains only a limited number of elements.

Thus the system I am building has to automatically gener-
ate user interfaces custom-tailored to any individual user’s
needs, taking into account not only individual impairments at
their canonical stages but also combinations of impairments
and their various intermediate stages, while enabling the

most efficient interaction given the user’s preferred modes of
interaction. The system also has to adapt over time to make
frequent tasks easier to accomplish. Finally, because physi-
cal impairments are, by definition, rare and often unique, it
has to be easy for the consultants, care givers or even some
users with impairments to quickly customize the system for
the idiosyncratic needs of the imparied individual.

DO USERS WANT ADAPTIVE UIs?
Adapting a user interface to user’s activities offers a poten-
tial to improve the quality of interaction, particularly if the
frequently accessed functionality is hard to reach or if in-
teracting with a device is slow and awkward (as is the case
for some mobile or impaired users). User-driven customiza-
tion is an effective approach but as user’s needs change, re-
customizing takes enough effort to practically deter many
users from keeping their customizations up to date [8, 9].

Automatic system-driven adaptation is a complementary ap-
proach, but one that causes a fair amount of controversy: the
proponents argue that automatic adaptation is a very effec-
tive technique to provide interactions optimized toward an
individual, while the critics point out that a frequently chang-
ing interface is likely to disorient and confuse the user. Sur-
prisingly, however, there is very little past research explicitly
studying automatic adaptation in graphical user interfaces.
The existing research includes both positive and negative ex-
amples of adaptation, sometimes reporting contradictory re-
sults without analyzing the reasons underlying the discrep-
ancy (e.g., [11] and [1]).

We have conducted four laboratory studies (see [3, 7] for
three of them) with two distinct applications (a software
graphing calculator and MS Word) and three different adap-
tation techniques (illustrated in Figure 2 in the version for
MS Word). We have synthesized our results with past re-
search and began to outline how different design choices
and interactions make some adaptive interfaces a pleasure to
work with while others are frustrating impediments.

In the three studies that directly compared different adaptive
techniques, Split Interfaces (where frequently used function-
ality is copiedto a specially designated adaptive part of the

24 UIST 2006 Adjunct Proceedings: Doctoral Symposium



Figure 3: Two examples of personalization in SUPPLE:
the left window features a dynamic section at the top
whose automatically updated content reflects the most
common activity; the right window was customized by
the user: some functionality was removed while duplex
printing and number of pages per sheet were added.

interface – see Figure 2a) were shown to result in significant
improvement in both performance and satisfaction compared
to the non-adaptive baseline. Our experiments and the anal-
ysis of past results also indicated that a number of specific
design and context factors impact adoption of adaptive GUIs.
Those factors included the accuracy and predictability of the
adaptive algorithm, adaptation frequency, the frequency with
which the user interacts with the interface, task complexity
and the spatial stability of the interface (i.e., to what extent
the original interface gets modified during the adaptation).

The results of our studies lead us to incorporate the split in-
terface approach into our system. As illustrated in the left
panel of Figure 3, all interfaces generated with our system
can optionally include a “Common Activities” area, where
frequently accessed but hard to reach functionality is auto-
matically duplicated in response to the observed usage pat-
terns. Unlike hard-coded GUI’s, our automatically generated
interfaces can promote arbitrary pieces of functionality (not
just buttons or menu items) to the adaptive areas.

OPTIMIZATION FOR AUTOMATIC UI GENERATION
For the purpose of automatic generation of user interfaces,
I use a functional descriptionto define thetypesof data
that need to be exchanged between the user and the appli-
cation. Thedevice modeldescribes the widgets available
on the device, as well as cost functions, which estimate the
user effort required for manipulating supported widgets with
the interaction methods supported by the device. Finally, I
model a user’s typical activities with a device- and rendering-
independentuser trace.

My goal was to build a system that can create a custom user
interface for each user based on that user’s current activity,
her abilities and the available devices. SUPPLE, the system
I have built, fulfills those requirements: it can quickly cre-
ate interfaces on the fly, and the interfaces are immediately
usable without any adjustments on the part of the user [4, 3].

With SUPPLE, I cast UI rendering as a constrained optimiza-
tion problem, where the metric to be optimized is the es-
timated ease of use of the rendered interface, and the con-
straints reflect the available widgets and the screen size. This
approach is a radical departure from the dominant paradigm
of using knowledge-based techniques for user interface gen-
eration. Unlike the previous approaches, SUPPLE trivially
adapts to devices with vastly different screen sizes and using
SUPPLE on a novel device only requires specifying a new
device model listing what widgets are available on that de-
vice. Finally, by modifying the cost function, SUPPLE can
be made to produce very different styles of user interfaces or
to accommodate other objectives, such as similarity to previ-
ously generated versions of the interface (even if they were
generated for a different device) [6].

Although there was some previous work that used optimiza-
tion methods for laying out widgets within a dialog window
(e.g., [10, 2]), my rendering algorithm does much more: it
chooses the widgets, it chooses the navigation structure of
the UI (i.e., puts things into tab panes or pop-up windows if
not everything can fit on one screen) and chooses the layout.

Despite computational complexity, my algorithm is very ef-
ficient and renders even complex interfaces in less than two
seconds on a standard desktop computer.

PERSONALIZING THE PROCESS
Decision-theoretic optimization is becoming a popular tool
in the user interface community, but creating accurate cost
(or utility) functions has become a bottleneck — in most
cases the numerous parameters of these functions are cho-
sen manually, which is a tedious and error-prone process.
SUPPLE’s cost functions, for example, typically rely on more
than 40 parameters reflecting complex and interacting deci-
sion trade-offs. These parameters have to be chosen anew for
each new target device and interaction style.

I have thus built ARNAULD, a system that allows users to
quickly come up with the right parameters just by provid-
ing feedback about concrete outcomes [5]. ARNAULD uses
two types of interactions: system-driven elicitation and user-
driven example critiquing.

Users can freely switch between the two types of inter-
actions. During the system-driven elicitation, ARNAULD
presents the user with a pair of outcomes, always starting
with a pair where only one easily-identifiable difference ex-
ists between the two alternatives (Figure 4a). The user is
asked to express preference for one outcome or the other. If
the difference causes rippling effects in the larger context, a
followup query is issued illustrating those effects (Figure 4b).
Theseisolatedandsituatedqueries allow ARNAULD to iden-
tify not only absolute preferences but also trade-offs: for ex-
ample, in the two queries shown in Figure 4, the user indi-
cated that he preferred sliders to combo boxes but not if they
caused the interface to grow so large that it had to be split
into separate tab panes.

The example critiquing interaction allows users to change the
widget choice or layout of any part of the interface through
direct manipulation (using the customization framework, in

UIST 2006 Adjunct Proceedings: Doctoral Symposium 25



(a) (b)

Figure 4: Two consecutive steps in the active elicitation process. (a) ARNAULD poses a ceteris paribusquery, showing
two renderings of light intensity control in isolation; this user prefers to use a slider. (b) Realizing that the choice may
impact other parts of the classroom controller interface, ARNAULD asks the user to consider a concrete interface that
uses combo boxes for light intensities but is able to show all elements at once, and an interface where sliders are used
but different parts of the interface have to be put in separate tab panes in order to meet the overall size constraints.

the case of SUPPLE) – these interactions also provide input
to the learning algorithm.

The learning algorithm uses the max-margin approach to find
a set of parameters that optimally matches the preferences
expressed by the user through the two types of interactions.

CONCLUSIONS
Numerous trends make the design of user interfaces in-
creasingly more challenging: increasingly complex applica-
tions, people’s continually changing work habits, fast grow-
ing number of diverse computational devices, awkward inter-
action styles afforded by some of the devices, and the grow-
ing need to offer the same access to computation to all mem-
bers of the society regardless of their physical impairments.

The complexity of the software, people’s shifting work pat-
terns and awkward interactions imposed by some computing
platforms motivate the need for interfaces that can adapt to
individual usage patterns. The diversity of devices, individ-
ual interaction needs and preferences create the need for de-
signing multiple versions of interfaces to address needs of
different users, some of which cannot even be anticipated in
advance.

I believe that automatically generated personalized adaptive
user interfaces are an effective approach to address those
challenges. In my thesis I intend to demonstrate that such in-
terfaces are in fact feasible both from the usability and tech-
nology points of view. Indeed, my user studies have demon-
strated that it is generally possible to design adaptive user
interfaces that improve user performance and satisfaction;
these studies have also shed light on what design choices in-
fluence the success or failure of adaptive UIs. I have also
developed SUPPLE, a novel optimization-based approach for
automatically generating interfaces. The approach is flexi-
ble enough so that it can be adapted to different devices, in-
teraction methods and users. This adaptation, while hard in

principle, can be performed easily with ARNAULD – a sys-
tem that allows end-users to quickly re-parametrize SUPPLE
to match their individual interaction requirements.

While designers are unlikely to give up pixel-level control
over the design of user interfaces for commercial applica-
tions running on standard platforms, I intend to demonstrate
that the approaches presented in this thesis can, even in near
term, significantly change how physically impaired or mo-
bile users interact with computation.

REFERENCES
1. L. Findlater and J. McGrenere. A comparison of static, adap-

tive, and adaptable menus. InCHI’04, 2004.
2. J. Fogarty and S. E. Hudson. GADGET: A toolkit for

optimization-based approaches to interface and display gen-
eration. InUIST’03, Vancouver, Canada, 2003.

3. K. Gajos, D. Christianson, R. Hoffmann, T. Shaked, K. Hen-
ning, J. J. Long, and D. S. Weld. Fast and robust interface
generation for ubiquitous applications. InUbicomp’05, 2005.

4. K. Gajos and D. S. Weld. Supple: automatically generating
user interfaces. InIUI’04 , 2004.

5. K. Gajos and D. S. Weld. Preference elicitation for interface
optimization. InUIST’05, 2005.

6. K. Gajos, A. Wu, and D. S. Weld. Cross-device consistency
in automatically generated user interfaces. InWorkshop on
Multi-User and Ubiquitous User Interfaces (MU3I’05), 2005.

7. K. Z. Gajos, M. Czerwinski, D. S. Tan, and D. S. Weld. Ex-
ploring the design space for adaptive graphical user inter-
faces. InAVI ’06, 2006.

8. W. E. Mackay. Triggers and barriers to customizing software.
In CHI’91, 1991.

9. J. McGrenere, R. M. Baecker, and K. S. Booth. An evaluation
of a multiple interface design solution for bloated software. In
CHI’02, 2002.

10. A. Sears. Layout appropriateness: A metric for evaluat-
ing user interface widget layout. Software Engineering,
19(7):707–719, 1993.

11. A. Sears and B. Shneiderman. Split menus: effectively using
selection frequency to organize menus.ACM Trans. Comput.-
Hum. Interact., 1(1):27–51, 1994.

26 UIST 2006 Adjunct Proceedings: Doctoral Symposium




